

1. Simplify the following expressions:

(a)  $1 + 1 + 1 + 1 + 1 \times 0$

*Solution.* Multiplication first:  $1 + 1 + 1 + 1 + 0$

Then add. The solution is 4. □

(b)  $7 + 7 \div 7 + 7 \times 7 - 7$

*Solution.* Division first:  $7 + 1 + 7 \times 7 - 7$

Then multiplication:  $7 + 1 + 49 - 7$

Then perform addition and subtraction. The solution is 50. □

(c)  $6 \div 2(1 + 2)$

*Solution.* Simplify inside the parentheses first:  $6 \div 2(3)$

Then division:  $3(3)$

Then multiply. The solution is 9. □

(d)  $9 - 3 \times \frac{1}{3} + 1$

*Solution.* Multiplication first:  $9 - 1 + 1$

Then perform addition and subtraction. The solution is 9. □

2. Write the following expressions as one fraction (simplify as much as possible):

(a)  $\frac{3}{10} + \frac{4}{15}$

*Solution.* Get a common denominator. The least common denominator is 30:

$$\frac{3}{3} \cdot \frac{3}{10} + \frac{4}{15} \cdot \frac{2}{2} = \frac{9}{30} + \frac{8}{30} = \frac{17}{30}$$

□

(b)  $\frac{3}{10} \cdot \frac{4}{15}$

*Solution.* Multiply the numerators and denominators:

$$\frac{3}{10} \cdot \frac{4}{15} = \frac{3 \cdot 4}{10 \cdot 15} = \frac{12}{150} = \frac{2}{25}$$

□

$$(c) \frac{\frac{3}{10}}{\frac{4}{15}}$$

*Solution.* Multiply by the reciprocal of the denominator (i.e. flip the bottom fraction and multiply):

$$\frac{3}{10} \cdot \frac{15}{4} = \frac{3 \cdot 15}{10 \cdot 4} = \frac{45}{40} = \frac{9}{8}$$

□

3. Simplify  $8(2x + 5) - 7(x - 9)$

*Proof.* Distribute and combine like terms (watch out for signs!):

$$16x + 40 - 7x + 63 = 9x + 103$$

□

4. Multiply  $(2x + 5)^2$

*Proof.* Rewrite as a product and distribute:

$$(2x + 5)^2 = (2x + 5)(2x + 5) = 2x(2x + 5) + 5(2x + 5) = 4x^2 + 10x + 10x + 25 = 4x^2 + 20x + 25$$

□

5. Factor:

(a)  $x^2 - 4x + 4$

*Proof.* Find two factors of  $+4$  (last term) whose sum is  $-4$  (coefficient of  $x$  term). The factors are  $-2$  and  $-2$ :

$$x^2 - 4x + 4 = (x - 2)(x - 2) = (x - 2)^2$$

□

(b)  $9x^2 - 16$

*Solution.* Use the difference of squares formula  $a^2 - b^2 = (a - b)(a + b)$ :

$$9x^2 - 16 = (3x - 4)(3x + 4)$$

□

(c)  $2x^2 - 5x - 3$

*Solution.* Find two factors of  $2(-3)$  (the coefficient of  $x^2$  term multiplied by the last term) that add to  $-5$  (coefficient of  $x$  term). The factors are  $-6$  and  $+1$ .

Split up the middle term in terms of the two factors:

$$2x^2 - 5x - 3$$

$$2x^2 + (-6 + 1)x - 3$$

$$2x^2 - 6x + 1x - 3$$

Factor the first two terms and the last two terms:

$$2x(x - 3) + 1(x - 3)$$

These both have an  $(x - 3)$  in common, factor that out:

$$(x - 3)(2x + 1)$$

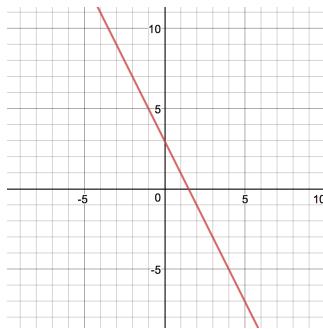
(Note: You may have another way of factoring this to get the correct solution and that is okay!)  $\square$

(d)  $x^3 + 8$

*Solution.* Use the sum of cubes formula  $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ :

$$x^3 + 8 = (x + 2)(x^2 - 2x + 4)$$

$\square$


6. Consider the line  $y = -2x + 3$ .

(a) What is the slope of the line? What is the  $y$ -intercept of the line?

*Solution.* Recall that a the line  $y = mx+b$  has slope  $m$  and  $y$ -intercept  $b$ . For  $y = -2x+3$ , the slope is  $-2$  and the  $y$ -intercept is  $3$ .  $\square$

(b) Sketch the graph of the line.

*Solution.*



□

**Challenge (Optional)**

7. Write the following expressions as one fraction (simplify as much as possible):

(a)  $\frac{1}{x} - \frac{2}{x(x+1)}$

*Solution.* Get a common denominator. The least common denominator is  $x(x+1)$ :

$$\frac{x+1}{x+1} \cdot \frac{1}{x} - \frac{2}{x(x+1)} = \frac{x+1-2}{x(x+1)} = \frac{x-1}{x(x+1)}$$

□

(b)  $\frac{x-4}{x^2-4} \div \frac{x^2-3x-4}{x^2+5x+6}$

*Solution.* Factor each of the numerators and denominators:

$$\frac{x-4}{(x-2)(x+2)} \div \frac{(x-4)(x+1)}{(x+3)(x+2)}$$

Flip the second fraction and multiply:

$$\frac{x-4}{(x-2)(x+2)} \cdot \frac{(x+3)(x+2)}{(x-4)(x+1)} = \frac{(x-4)(x+3)(x+2)}{(x-2)(x+2)(x-4)(x+1)} = \frac{x+3}{(x-2)(x+1)}$$

□