

Directional Derivatives

In all that follows, let $\vec{u} = \langle h, k \rangle$ be a unit vector. Let $f(x, y)$ be a function that is continuous near (a, b) and such that the partials exist and are continuous near (a, b) . These problems unpack slightly the notion that the directional derivative can be viewed as the slope of a tangent line.

1. Find the equation of the plane that contains the vectors \vec{k} and \vec{u} and passes through the point (a, b) .

\vec{u} in 3D is $\langle h, k, 0 \rangle$ ($\vec{u} = \langle h, k \rangle$ is in the xy plane)

$$\vec{k} = \langle 0, 0, 1 \rangle$$

$$\vec{n} = \vec{u} \times \vec{k} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ h & k & 0 \\ 0 & 0 & 1 \end{vmatrix} = \hat{i} \begin{vmatrix} k & 0 \\ 0 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} h & 0 \\ 0 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} h & k \\ 0 & 0 \end{vmatrix}$$

$$= \langle k, -h, 0 \rangle$$

Tangent plane: $\vec{n} \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$

$$\langle k, -h, 0 \rangle \cdot \langle x - a, y - b, z - z_0 \rangle = 0 \Rightarrow k(x - a) - h(y - b) = 0$$

2. Write down equations that describe the intersection of your plane with the surface $z = f(x, y)$.

3. Give a parametric equation for the line parallel to \vec{u} and passing through (a, b) . Use this to find a parameterization of the curve given by the intersection of your plane with the surface.

$$\begin{cases} z = f(x, y) \\ k(x - a) - h(y - b) = 0 \end{cases}$$

(3) Line: $\vec{s}(t) = \vec{s}_0 + t\vec{v} \rightarrow \vec{s}(t) = \langle a, b \rangle + t \langle h, k \rangle$
 $\vec{s}(t) = \langle ht+a, kt+b \rangle$

Substitute into (2): $z = f(\vec{s}(t))$

$$k(ht+a - a) - h(kt+b - b) = 0$$

$$\Rightarrow kht - hkt = 0 \Rightarrow 0 = 0.$$

So the parametrization is given by $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$

$$\vec{r}(t) = \langle ht+a, kt+b, f(\vec{s}(t)) \rangle$$

4. Find the tangent vector to the curve, using the parameterization you worked out in the previous part.

Need to find $\vec{r}'(t)$.

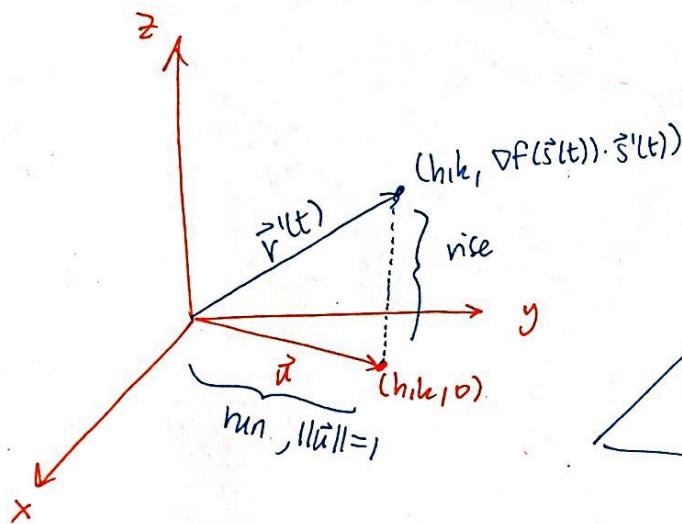
$$\vec{r}(t) = \langle ht+a, kt+b, f(\vec{s}(t)) \rangle$$

$$\vec{r}'(t) = \langle h, k, \underbrace{\nabla f(\vec{s}(t)) \cdot \vec{s}'(t)}_{\text{Chain rule}} \rangle$$

$$\begin{aligned} \text{Observe: } \nabla f(\vec{s}(t)) \cdot \vec{s}'(t) &= \langle f_x(\vec{s}(t)), f_y(\vec{s}(t)) \rangle \cdot \langle h, k \rangle \\ &= h f_x(\vec{s}(t)) + k f_y(\vec{s}(t)). \end{aligned}$$

5. What do you notice about the first two coordinates? Explain how the “unit vector” condition on \vec{u} gives us an interpretation of $D_{\vec{u}}f(a, b)$ as the slope of this tangent line.

First two coordinates are $\langle h, k \rangle = \vec{u}$.



$$\text{slope} = \frac{\text{rise}}{\text{run}} = \frac{\nabla f(\vec{s}(t)) \cdot \vec{s}'(t)}{1}$$

↑
since $\|\vec{u}\| = 1$

$$= h f_x(\vec{s}(t)) + k f_y(\vec{s}(t))$$

$$\begin{aligned} \text{But } D_{\vec{u}}f(a, b) &= \langle f_x(a, b), f_y(a, b) \rangle \cdot \underbrace{\langle h, k \rangle}_{\vec{u}} \\ &= h f_x(a, b) + k f_y(a, b) \end{aligned}$$

same when $t=0$!