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Math 31B Worksheet
Week 4

1. Write each of the following sums in summation notation (i.e., with a »_):
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(a) 141+t + 31+ 15 (finite sum)
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(b) 35+ 15 T 55 + 5 + 75 (finite sum)
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2. For each of the following series, compute the partial sums Si, Ss, S3, and Sj.
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3. Consider a series Z a,, and its partial sums Sy = Z Q.
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(a) Complete the following definition: the series converges if and only if

me Qimi of Mg parkal sums converges

(b) True/False: If lim a, = 0, then the series converges.
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(c) True/False: If 71113010 a, # 0, then the series diverges.
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For the True/False questions above: If true, what theorem tells you it’s true? If false,
give an example that demonstrates why it’s false.



4. In each part of this problem, you are given a geometric series. For each one, do these
steps: i. Identify the “common ratio” r between the terms. ii. Identify ¢, the first term
of the series. iii. Does the series converge, and if so, what value does it converge to?
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5. For this problem, consider the series Z and its partial sums Sy.
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(a) Compute the integral / ———— dx. (Your answer will be in terms of N.)
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(b) The graph below is of the function f(x) = ;11 that you just integrated.
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Note that the function is positive, decreasing, and continuous.

On the graph, sketch rectangles that represent a Riemann sum for the integral
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f(x) dx
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Use sub-intervals of size Ax = 1, and use the right endpoint of each sub-interval
for your sample points.



(¢) Explain how the Riemann sum you just sketched is equal to a partial sum Sy for
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(d) Which is larger/smaller, the area represented by the Riemann sum, or the area
represented by the integral? Express this as an inequality relating Sy to an
integral.
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(e) Explain how the results of parts (a) and (d) show that the series converges or
diverges.
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