

Exponential and Logarithmic Functions

Some important exponent and logarithmic laws:

$$\begin{array}{llll}
 a^m a^n = a^{m+n} & \frac{a^m}{a^n} = a^{m-n} & (a^m)^n = a^{mn} & a^{-1} = \frac{1}{a} \\
 \log_b(mn) = \log_b m + \log_b n & \log_b \left(\frac{m}{n}\right) = \log_b m - \log_b n & \log_b m^n = n \log_b m & \\
 \log_b m = \frac{\log_a m}{\log_a b} & \log_b x = y \Leftrightarrow b^y = x & \log_b(b^x) = x & b^{\log_b x} = x
 \end{array}$$

Derivatives:

$$\begin{array}{ll}
 \frac{d}{dx} e^x = e^x & \frac{d}{dx} a^x = a^x \ln a \\
 \frac{d}{dx} \ln x = \frac{1}{x}
 \end{array}$$

To take the derivative of a logarithmic function with a different base, use the change of base formula:

$$\frac{d}{dx} \log_b x = \frac{d}{dx} \frac{\ln x}{\ln b} = \frac{1}{x \ln b}$$

L'Hôpital's Rule

If $\lim_{x \rightarrow a} \frac{f(x)}{g(x)}$ is **indeterminate** and $f(x), g(x)$ are differentiable near a , then

$$\lim_{x \rightarrow a} \lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a} \lim_{x \rightarrow a} \frac{f'(x)}{g'(x)}$$

The following are indeterminate forms:

$$\frac{0}{0}, \quad \pm \frac{\infty}{\infty}, \quad 0 \cdot \infty, \quad \infty - \infty, \quad 0^0, \quad 1^\infty, \quad \infty^0$$

Sequences

A **sequence** is a list of numbers:

$$a_1, a_2, \dots$$

We can also think of sequences as a function $f(n)$ on the natural numbers.

A sequence **converges** to a finite limit L if

$$\lim_{n \rightarrow \infty} a_n = L.$$

If the sequence doesn't converge (e.g. the limit doesn't exist or is $\pm\infty$), then the sequence **diverges**. The following theorems are useful to determine whether a sequence converges or diverges.

- If $\lim_{x \rightarrow \infty} f(x) = L$ and $f(n) = a_n$, then $\lim_{n \rightarrow \infty} a_n = L$. (Use this if you want to use L'Hôpital's Rule.)
- Squeeze Theorem: If $a_n \leq b_n \leq c_n$ and $\lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} c_n = L$, then $\lim_{n \rightarrow \infty} b_n = L$. (Use this if you have sine or cosine terms in the sequence.)
- If $\lim_{n \rightarrow \infty} |a_n| = 0$, then $\lim_{n \rightarrow \infty} a_n = 0$. (Use this if you have an alternating sequence.)
- If $\lim_{n \rightarrow \infty} a_n = L$ and f is a continuous function at L , then

$$\lim_{n \rightarrow \infty} f(a_n) = f\left(\lim_{n \rightarrow \infty} a_n\right) = f(L).$$

(Use this theorem if you want to move the limit inside another function.)

Series

A **series** $\sum_{n=1}^{\infty} a_n$ is the sum of the terms of the sequence a_n :

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots$$

The partial sum of a series is $s_N = \sum_{n=1}^N a_n$. A series **converges** if the limit of its partial sums converges, otherwise it diverges. We have several tests to help us determine if a series converges.

Divergence Test

An important fact about convergent series is the following: If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \rightarrow \infty} a_n = 0$. This motivates the Divergence Test.

Theorem (Divergence Test). *If $\lim_{n \rightarrow \infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$ diverges.*

What happens if $\lim_{n \rightarrow \infty} a_n = 0$? We need to use a different test.

Geometric Series

A geometric series is of the form

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \dots$$

is convergent if $|r| < 1$, divergent if $|r| \geq 1$. If $|r| < 1$, then

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}.$$

Telescopic Series

A telescope series is a series in which several of the terms cancel out. Write out a general partial sum and then take the limit.

Integral Test and p -Series

Theorem (Integral Test). *Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_n = f(n)$.*

(i) *If $\int_1^{\infty} f(x)dx$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.*

(ii) *If $\int_1^{\infty} f(x)dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.*

Theorem (p -Series Test). *The p -series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if $p > 1$ and divergent if $p \leq 1$.*

Comparison Tests

Theorem (Direct Comparison). *Suppose $a_n, b_n \geq 0$.*

(i) *If $a_n \leq b_n$ and $\sum b_n$ is convergent, then $\sum a_n$ is also convergent.*

(ii) *If $a_n \geq b_n$ and $\sum a_n$ is divergent, then $\sum b_n$ is also divergent.*

Theorem (Limit Comparison). *Suppose $a_n, b_n \geq 0$.*

(i) *If $\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = c$ where $0 < c < \infty$, then $\sum a_n$ and $\sum b_n$ either both converge or both diverge.*

(ii) *If $\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = 0$ where $0 < c < \infty$, then $\sum a_n$ converges if $\sum b_n$ converges.*

(iii) *If $\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = \infty$ where $0 < c < \infty$, then $\sum a_n$ diverges if $\sum b_n$ diverges.*

Alternating Series Test

Theorem (Alternating Series Test). *If*

- (i) $\lim_{n \rightarrow \infty} b_n = 0$, and
- (ii) b_n is a decreasing sequence,

then $\sum_{n=1}^{\infty} (-1)^n b_n$ converges.

To show a sequence a_n is decreasing, set $f(n) = a_n$ show that $f'(x) < 0$.

Absolute Convergence, Ratio Test, and Root Test

A series $\sum a_n$ is **absolutely convergent** if $\sum |a_n|$ is convergent. $\sum a_n$ is **conditionally convergent** if it is convergent but $\sum |a_n|$ is divergent.

Theorem. *If $\sum |a_n|$ converges then $\sum a_n$ converges.*

Theorem (Ratio Test). *Let $L = \lim_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} \right|$.*

- (i) *If $L < 1$, then $\sum a_n$ is absolutely convergent*
- (ii) *If $L > 1$, then $\sum a_n$ diverges.*
- (iii) *If $L = 1$, then the test is inconclusive. Use a different test.*

Theorem (Root Test). *Let $L = \lim_{n \rightarrow \infty} \sqrt[n]{|a_n|}$.*

- (i) *If $L < 1$, then $\sum a_n$ is absolutely convergent*
- (ii) *If $L > 1$, then $\sum a_n$ diverges.*
- (iii) *If $L = 1$, then the test is inconclusive. Use a different test.*

Taylor Polynomial

The n -th degree Taylor Polynomial $T_n(x)$ of $f(x)$ about $x = a$ is given by

$$T_n(x) = f(a) + \frac{f'(a)}{1!}(x - a)^1 + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n = \sum_{k=1}^n \frac{f^{(k)}(a)}{k!}(x - a)^k$$

Inverse Functions

$f^{-1}(x)$ is the inverse function of $f(x)$ if $f^{-1}(f(x)) = x$, $f(f^{-1}(x)) = x$.

If f is a one-to-one differentiable function with inverse function f^{-1} and $f'(f^{-1}(a)) \neq 0$, then the inverse function is differentiable at a and

$$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$$

Inverse Trigonometric Functions

Below are some important derivatives and integrals:

$$\begin{aligned}\frac{d}{dx}(\sin^{-1}(x)) &= \frac{1}{\sqrt{1-x^2}} & \Leftrightarrow \int \frac{1}{\sqrt{1-x^2}} dx &= \sin^{-1}(x) + C \\ \frac{d}{dx}(\tan^{-1}(x)) &= \frac{1}{1+x^2} & \Leftrightarrow \int \frac{1}{1+x^2} dx &= \tan^{-1}(x) + C\end{aligned}$$

Partial Fraction Decomposition

A rational function is of the form $f(x) = \frac{p(x)}{q(x)}$ where $p(x), q(x) \neq 0$ are polynomials. To evaluate the integral $\int \frac{p(x)}{q(x)} dx$ we need to use partial fraction decomposition. Use the following steps:

1. If $\deg p(x) \geq \deg q(x)$ then use long division.
2. Factor $q(x)$.
3. Write out the partial fraction decomposition using the factors of $q(x)$ in the cases below:

(i) If $q(x)$ has distinct linear factors, e.g. $q(x) = (a_1x - b_1)(a_2x - b_2) \cdots (a_nx_n - b_n)$, then

$$\frac{p(x)}{q(x)} = \frac{A_1}{a_1x - b_1} + \frac{A_2}{a_2x - b_2} + \cdots + \frac{A_n}{a_nx - b_n}$$

where A_1, \dots, A_n are constants.

(ii) If $q(x)$ has distinct quadratic factors, e.g. $q(x) = (a_1x^2 + b_1x + c_1)(a_2x^2 + b_2x + c_2) \cdots (a_nx^2 + b_nx + c_n)$, then

$$\frac{p(x)}{q(x)} = \frac{A_1x + B_1}{a_1x^2 + b_1x + c_1} + \frac{A_2x + B_2}{a_2x^2 + b_2x + c_2} + \cdots + \frac{A_nx + B_n}{a_nx^2 + b_nx + c_n}$$

where $A_1, \dots, A_n, B_1, \dots, B_n$ are constants.

(iii) If $q(x)$ has repeated linear factors, e.g. $q(x) = (ax - b)^n$, then

$$\frac{p(x)}{q(x)} = \frac{A_1}{ax - b} + \frac{A_2}{(ax - b)^2} + \cdots + \frac{A_n}{(ax - b)^n}$$

where A_1, \dots, A_n are constants.

(iv) If $q(x)$ has repeated quadratic factors, e.g. $q(x) = (ax^2 + bx + c)^n$, then

$$\frac{p(x)}{q(x)} = \frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \cdots + \frac{A_nx + B_n}{(ax^2 + bx + c)^n}$$

where $A_1, \dots, A_n, B_1, \dots, B_n$ are constants.

(v) $q(x)$ may be a mix of cases (i) - (iv) – how fun!

4. Solve for the constants in the numerators of the partial fraction decomposition.
5. Integrate $\int \frac{p(x)}{q(x)} dx$ using the partial fraction decomposition. Your answer will most likely have inverse tangent and/or natural log terms.

Note: You do not need to memorize the exact forms above. If you have a linear factor, a constant goes on the numerator. If you have a quadratic factor, a linear term like $Ax + B$ goes on the numerator.