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Exponential and Logarithmic Functions

Some important exponent and logarithmic laws:

aman = am+n am

an
= am−n (am)n = amn a−1 =

1

a

logb(mn) = logb m + logb n logb

(m
n

)
= logb m− logb n logb m

n = n logb m

logb m =
loga m

loga b
logb x = y ⇔ by = x logb(b

x) = x blogb x = x

Derivatives:
d

dx
ex = ex

d

dx
ax = ax ln a

d

dx
lnx =

1

x

To take the derivative of a logarithmic function with a different base, use the change of base formula:

d

dx
logb x =

d

dx

lnx

ln b
=

1

x ln b

L’Hôpital’s Rule

If lim
x→a

f(x)

g(x)
is indeterminate and f(x), g(x) are differentiable near a, then

lim
x→a

lim
x→a

f(x)

g(x)
= lim

x→a
lim
x→a

f ′(x)

g′(x)

The following are indeterminate forms:

0

0
, ±∞

∞
, 0 · ∞, ∞−∞, 00, 1∞, ∞0

Sequences

A sequence is a list of numbers:
a1, a2, ...

We can also think of sequences as a function f(n) on the natural numbers.
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A sequence converges to a finite limit L if

lim
n→∞

an = L.

If the sequence doesn’t converge (e.g. the limit doesn’t exist or is ±∞), then the sequence diverges.
The following theorems are useful to determine whether a sequence converges or diverges.

• If limx→∞ f(x) = L and f(n) = an, then limn→∞ an = L. (Use this if you want to use
L’Hôpital’s Rule.)

• Squeeze Theorem: If an ≤ bn ≤ cn and limn→∞ an = limn→∞ cn = L, the limn→∞ bn = L.
(Use this if you have sine or cosine terms in the sequence.)

• If limn→∞ |an| = 0, then limn→∞ an = 0. (Use this if you have an alternating sequence.)

• If limn→∞ an = L and f is a continous function at L, then

lim
n→∞

f(an) = f
(

lim
n→∞

an

)
= f(L).

(Use this theorem if you want to move the limit inside another function.)

Series

A series

∞∑
n=1

an is the sum of the terms of the sequence an:

∞∑
n=1

an = a1 + a2 + . . .

The partial sum of a series is sN =

N∑
n=1

an. A series converges if the limit of its partial sums

converges, otherwise it diverges. We have several tests to help us determine if a series converges.

Divergence Test

An important fact about convergent series is the following: If

∞∑
n=1

an converges, then lim
n→∞

an = 0.

This motivates the Divergence Test.

Theorem (Divergence Test). If lim
n→∞

an 6= 0, then

∞∑
n=1

an diverges.

What happens if lim
n→∞

an = 0? We need to use a different test.
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Geometric Series

A geometric series is of the form

∞∑
n=1

arn−1 = a + ar + ar2 + ...

is convergent if |r| < 1, divergent if |r| ≥ 1. If |r| < 1, then

∞∑
n=1

arn−1 =
a

1− r
.

Telescopic Series

A telescope series is a series in which several of the terms cancel out. Write out a general partial
sum and then take the limit.

Integral Test and p-Series

Theorem (Integral Test). Suppose f is a continuous, positive, decreasing function on [1,∞) and
let an = f(n).

(i) If
∫∞
1

f(x)dx is convergent, then
∑∞

n=1 an is convergent.

(ii) If
∫∞
1

f(x)dx is divergent, then
∑∞

n=1 an is divergent.

Theorem (p-Series Test). The p-series
∑∞

n=1
1
np is convergent if p > 1 and divergent if p ≤ 1.

Comparison Tests

Theorem (Direct Comparison). Suppose an, bn ≥ 0.

(i) If an ≤ bn and
∑

bn is convergent, then
∑

an is also convergent.

(ii) If an ≥ bn and
∑

an is divergent, then
∑

bn is also divergent.

Theorem (Limit Comparison). Suppose an, bn ≥ 0.

(i) If limn→∞
an
bn

= c where 0 < c <∞, then
∑

an and
∑

bn either both converge or both diverge.

(ii) If limn→∞
an
bn

= 0 where 0 < c <∞, then
∑

an converges if
∑

bn converges.

(iii) If limn→∞
an
bn

=∞ where 0 < c <∞, then
∑

an diverges if
∑

bn diverges.
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Alternating Series Test

Theorem (Alternating Series Test). If

(i) limn→∞ bn = 0, and

(ii) bn is a decreasing sequence,

then
∑∞

n=1(−1)nbn converges.

To show a sequence an is decreasing, set f(n) = an show that f ′(x) < 0.

Absolute Convergence, Ratio Test, and Root Test

A series
∑

an is absolutely convergent if
∑
|an| is convergent.

∑
an is conditionally conver-

gent if it is convergent but
∑
|an| is divergent.

Theorem. If
∑
|an| converges then

∑
an converges.

Theorem (Ratio Test). Let L = limn→∞

∣∣∣∣an+1

an

∣∣∣∣.
(i) If L < 1, then

∑
an is absolutely convergent

(ii) If L > 1, then
∑

an diverges.

(iii) If L = 1, then the test is inconclusive. Use a different test.

Theorem (Root Test). Let L = limn→∞
n
√
|an|.

(i) If L < 1, then
∑

an is absolutely convergent

(ii) If L > 1, then
∑

an diverges.

(iii) If L = 1, then the test is inconclusive. Use a different test.

Power Series

A power series about a is given by
∞∑

n=0

cn(x− a)n

To find the radius of convergence R of a power series, use the Ratio Test:

lim
n→∞

|an+1|
|an|

< 1

To find the interval of convergence, evalute |x− a| < R at the endpoints.
Using geometric series, we can find the formula of f(x) = 1

1−x , |x| < 1:

1

1− x
=

∞∑
n=0

xn
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Taylor Series

The Taylor series representation of f(x) about a is given by

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n

The Maclaurin series if the Taylor series with a = 0. The following are some common Maclaurin
series:

ex =

∞∑
n=0

xn

n!

sinx =

∞∑
n=0

(−1)nx2n+1

(2n + 1)!

cosx =

∞∑
n=0

(−1)nx2n

(2n)!

Taylor Polynomial

The n-th degree Taylor Polynomial Tn(x) of f(x) about x = a is given by

Tn(x) = f(a) +
f ′(a)

1!
(x− a)1 +

f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n =

n∑
k=1

f (k)(a)

k!
(x− a)k

The error of the Taylor Polynomial Tn is given by

|f(x)− Tn(x)| = K|x− a|n+1

(n + 1)!
where K = max

[a,x]
|f (n+1)(x)|

Inverse Functions

f−1(x) is the inverse function of f(x) if f−1(f(x)) = x, f(f−1(x)) = x.

If f is a one-to-one differentiable function with inverse function f−1 and f ′(f−1(a)) 6= 0, then the
inverse function is differentiable at a and

(f−1)′(a) =
1

f ′(f−1(a))

Integration by Parts

The formula for integration by parts is given by∫
udv = uv −

∫
vdu
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A helpful mneumonic for choosing u is “LIATE”:

Logarithms

Inverse Trig

Algebraic

Trig

Exponential

Inverse Trigonometric Functions

Below are some important derivatives and integrals:

d

dx
(sin−1(x)) =

1√
1− x2

⇔
∫

1√
1− x2

dx = sin−1(x) + C

d

dx
(tan−1(x)) =

1

1 + x2
⇔

∫
1

1 + x2
dx = tan−1(x) + C

Partial Fraction Decomposition

A rational function is of the form f(x) = p(x)
q(x) where p(x), q(x) 6= 0 are polynomials. To evaluate

the integral
∫ p(x)

q(x)dx we need to use partial fraction decomposition. Use the following steps:

1. If degp(x) ≥ degq(x) then use long division.

2. Factor q(x).

3. Write out the partial fraction decomposition using the factors of q(x) in the cases below:

(i) If q(x) has distinct linear factors, e.g. q(x) = (a1x− b1)(a2x− b2) · · · (anxn − bn), then

p(x)

q(x)
=

A1

a1x− b1
+

A2

a2x− b2
+ · · ·+ An

anx− bn

where A1, ..., An are constants.

(ii) If q(x) has distinct quadratic factors, e.g. q(x) = (a1x
2 + b1x + c1)(a2x

2 + b2x +
c2) · · · (anx2 + bnx + cn), then

p(x)

q(x)
=

A1x + B1

a1x2 + b1x + c1
+

A2x + B2

a2x2 + b2x + c2
+ · · ·+ Anx + Bn

anx2 + bnx + cn

where A1, ..., An, B1, ..., Bn are constants.

(iii) If q(x) has repeated linear factors, e.g. q(x) = (ax− b)n, then

p(x)

q(x)
=

A1

ax− b
+

A2

(ax− b)2
+ · · ·+ An

(ax− b)n

where A1, ..., An are constants.
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(iv) If q(x) has repeated quadratic factors, e.g. q(x) = (ax2 + bx + c)n, then

p(x)

q(x)
=

A1x + B1

ax2 + bx + c
+

A2x + B2

(ax2 + bx + c)
+ · · ·+ Anx + Bn

(ax2 + bx + c)n

where A1, ..., An, B1, ..., Bn are constants.

(v) q(x) may be a mix of cases (i) - (iv) − how fun!

4. Solve for the constants in the numerators of the partial fraction decomposition.

5. Integrate
∫ p(x)

q(x)dx using the partial fraction decomposition. Your answer will most likely have

inverse tangent and/or natural log terms.

Note: You do not need to memorize the exact forms above. If you have a linear factor, a constant
goes on the numerator. If you have a quadratic factor, a linear term like Ax + B goes on the
numerator.

Improper Integrals

There are two types of improper integrals:

1. Infinite Integrals

(a) Rewrite
∫∞
a

f(x)dx = limb→∞
∫ b

a
f(x).

(b) Rewrite
∫ a

−∞ f(x)dx = limb→∞
∫ a

b
f(x).

(c) Rewrite
∫∞
−∞ f(x)dx =

∫ a

−∞ f(x)dx +
∫∞
a

f(x)dx, then apply (a) and (b).

2. Discontinuous integrals

(a) If f(x) is discontinuous at b, then rewrite
∫ b

a
f(x)dx = limc→b−

∫ c

a
f(x)dx.

(b) If f(x) is discontinuous at a, then rewrite
∫ b

a
f(x)dx = limc→a+

∫ b

c
f(x)dx.

(c) If f(x) is discontinuous at c where a < c < b, then first rewrite
∫ b

a
f(x)dx =

∫ c

a
f(x)dx+∫ b

c
f(x)dx, then apply (a) and (b).

If the limit exists (not infinite), then the integral is convergent. If the limit does not exist, the
integral is divergent.
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