

Math 32B Practice Problems III

Written by Victoria Kala

vtkala@math.ucla.edu

Last updated March 12, 2019

1. Evaluate $\int_C xydx + x^2dy$ where C is the rectangle with vertices $(0, 0), (3, 0), (3, 1), (0, 1)$ oriented counterclockwise.
2. Use Stokes' Theorem to evaluate $\iint_S \text{curl}(\mathbf{F}) \cdot d\mathbf{S}$ where $\mathbf{F} = x^2z^2\mathbf{i} + y^2z^2\mathbf{j} + xyz\mathbf{k}$ and S is the part of the paraboloid $z = x^2 + y^2$ that lies in the cylinder $x^2 + y^2 = 4$.
3. Consider the vector field $\mathbf{F}(x, y, z) = yz\mathbf{i} + 2xz\mathbf{j} + e^{xy}\mathbf{k}$ where C is the circle $x^2 + y^2 = 16, z = 5$ oriented counterclockwise when viewed from above.
 - (a) Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$ by finding an appropriate parametrization vector $\mathbf{r}(t)$.
 - (b) Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$ using Stokes' Theorem, and verify it is equal to your solution in part (a).
4. Verify that the Divergence Theorem is true for the vector field $\mathbf{F}(x, y, z) = 3x\mathbf{i} + xy\mathbf{j} + 2xz\mathbf{k}$ where E is the cube bounded by the planes $x = 0, x = 1, y = 0, y = 1, z = 0, z = 1$. (Note: to verify the theorem is true you need to show calculate both $\iint_S \mathbf{F} \cdot d\mathbf{S}$ and $\iiint_E \text{div}(\mathbf{F})dV$ and show they are equal.)
5. Use the Divergence Theorem to calculate the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F}(x, y, z) = (\cos z + xy^2)\mathbf{i} + xe^{-z}\mathbf{j} + (\sin y + x^2z)\mathbf{k}$, and S is the surface of the solid bounded by the paraboloid $z = x^2 + y^2$ and the plane $z = 4$.