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1. Evaluate [, zydz 4+ 2?dy where C' is the rectangle with vertices (0,0),(3,0), (3,1), (0,1) ori-
ented counterclockwise.
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2. Use Stokes’ Theorem to evaluate ffs curl(F) - dS where F = 2222 + y%2%j + zyzk and S is
the part of the paraboloid z = 22 4+ »? that lies in the cylinder 22 4 2 = 4.
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3. Consider the vector field F(xz,y, z) = yzi+2xzj+e*Yk where C is the circle 22 +y? = 16,z = 5
oriented counterclockwise when viewed from above.

(a) Calculate [, F -dr by finding an appropriate parametrization vector r(t).
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(b) Calculate f( F - dr using Stokes’ Theorem, and verify it is equal to your solution in part
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4. Verify that the Divergence Theorem is true for the vector field F(z,y, 2) = 3zi + zyj + 2zzk
where E is the cube bounded by the planes 2 = 0,z = 1,y = 0,y = 1,z = 0,z = 1. (Note:
to verify the theorem is true you need to show calculate both ”s F - dS and f”E div(F)dV

and show they are equal.)
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5. Use the Divergence Theorem to calculate the surface integral [[(F - dS where F(z,y,z) =
(cosz + xy?)i + ze™%j + (siny + 222)k, and S is the surface of the solid bounded by the
paraboloid z = 22 + 32 and the plane z = 4.
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