

Math 33A – Week 2

Written by Victoria Kala

April 9, 2019

Name: KEY

1. Let $A = \begin{pmatrix} 1 & 5 & 3 \\ 0 & -1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 0 & -3 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 3 \\ 0 & -2 \end{pmatrix}$. Compute the following if defined. If not defined, state why.

(a) $B + C$

undefined, B and C are not the same size

(b) $A - 2B$

$$\begin{pmatrix} 1 & 5 & 3 \\ 0 & -1 & 2 \end{pmatrix} - 2 \begin{pmatrix} 0 & -3 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 5 & 3 \\ 0 & -1 & 2 \end{pmatrix} - \begin{pmatrix} 0 & -6 & 2 \\ 2 & 0 & 2 \end{pmatrix} = \boxed{\begin{pmatrix} 1 & 11 & 1 \\ -2 & -1 & 0 \end{pmatrix}}$$

2. Give examples of a matrix A with rank 2 and appropriate sized vector b so that the system $Ax = b$ has ~~Answers will vary~~

(a) No solution

$$\left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ \hline A & & b \end{array} \right) \quad 0 \neq 5 \quad \text{No solution}$$

(b) One solution

$$\left(\begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & 0 \end{array} \right) \quad \text{Unique sol is } \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

(c) Infinitely many solutions

$$\left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & & & \end{array} \right) \quad \begin{matrix} \uparrow \\ \text{missing pivot} \end{matrix} \quad \text{solution is } \begin{pmatrix} 0 \\ 0 \\ t \end{pmatrix}, t \in \mathbb{R}$$

3. Let $x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $y = \begin{pmatrix} 4 \\ -5 \\ 6 \end{pmatrix}$. Compute $x \cdot y$. $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ -5 \\ 6 \end{pmatrix} = 1 \cdot 4 + 2 \cdot -5 + 3 \cdot 6 = 4 - 10 + 18 = \textcircled{12}$

4. Is $x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ a linear combination of $y = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $z = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$?

i.e. Is there a, b s.t. $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = a \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$? $\left(\begin{array}{ccc|c} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 3 \\ \hline 0 & & & \end{array} \right) \quad R_2 - R_1 \rightarrow R_2 \quad \left(\begin{array}{ccc|c} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 3 \\ \hline 0 & & & \end{array} \right) \quad R_3 - R_2 \rightarrow R_3 \quad \left(\begin{array}{ccc|c} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ \hline 0 & & & \end{array} \right) \quad \text{No solution}$

(No)

5. Determine which of the following transformations are linear. If the transformation is linear, find the matrix A so that $T(x) = Ax$.

(a) $T(x_1) = x_1^2$

(b) $T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \end{pmatrix}$

(a) $T(x) + T(y) = x^2 + y^2 >$ not the same
 $T(x+y) = (x+y)^2 >$ not the same
 $\text{Also } T(ax) = (ax)^2 >$ not always the same
 $aT(x) = ax^2 >$ the same

Not linear

(b) continued
 $aT\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = a\begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \end{pmatrix} >$ same
 $T\begin{pmatrix} ax_1 \\ ax_2 \end{pmatrix} = \begin{pmatrix} ax_1 + ax_2 \\ ax_1 - ax_2 \end{pmatrix}$
 T is linear, $A = (T\begin{pmatrix} 1 \\ 0 \end{pmatrix}, T\begin{pmatrix} 0 \\ 1 \end{pmatrix})$
 $A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

i.e. $T(\vec{x}) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \vec{x}$

(b) $T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + T\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \end{pmatrix} + \begin{pmatrix} y_1 + y_2 \\ y_1 - y_2 \end{pmatrix} >$ same
 $T\begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \end{pmatrix} = \begin{pmatrix} (x_1 + y_1) + (x_2 + y_2) \\ (x_1 + y_1) - (x_2 + y_2) \end{pmatrix}$

6. (a) Let $x = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}$. Find a, b, c so that

$x = a \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

$\left(\begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & -2 \\ 1 & 1 & 1 & 5 \end{array} \right) \xrightarrow{R_2 - R_1 \rightarrow R_2} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -3 \\ 1 & 1 & 1 & 5 \end{array} \right) \xrightarrow{R_3 - R_1 \rightarrow R_3} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 4 \end{array} \right)$

$\left(\begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 4 \end{array} \right) \xrightarrow{R_2 - R_2 \rightarrow R_2} \left(\begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 7 \end{array} \right)$

$A = (T\begin{pmatrix} 1 \\ 0 \end{pmatrix}, T\begin{pmatrix} 0 \\ 1 \end{pmatrix}) = \begin{pmatrix} 1 & 0 \\ 0 & 5 \\ 1 & -3 \\ -1 & 7 \end{pmatrix}$

$\begin{cases} a=1 \\ b=-3 \\ c=7 \end{cases}$

Check: $1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - 3 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + 7 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -3 & 0 \\ 1 & -3 & 7 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix} \checkmark$

(b) Suppose we know T is a linear transformation with $T\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -6 \\ 2 \end{pmatrix}$, $T\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -7 \\ 4 \end{pmatrix}$, $T\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. What is $T(x)$?

From (a), $x = a \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

$T(x) = T\left(a \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\right)$
 $= aT\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + bT\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + cT\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
 $= a \begin{pmatrix} -6 \\ 2 \end{pmatrix} + b \begin{pmatrix} -7 \\ 4 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

* T linear means $T(a\vec{x} + b\vec{y}) = aT(\vec{x}) + bT(\vec{y})$

But from (a) we also know $a=1, b=-3, c=7$

$\Rightarrow T(x) = 1 \begin{pmatrix} -6 \\ 2 \end{pmatrix} - 3 \begin{pmatrix} -7 \\ 4 \end{pmatrix} + 7 \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
 $= \begin{pmatrix} -6 \\ 2 \end{pmatrix} + \begin{pmatrix} 21 \\ -12 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
 $= \boxed{\begin{pmatrix} 15 \\ 34 \end{pmatrix}}$