
Math 33B Worksheet 2 (Exact ODEs)

Name: Score:

Circle the name of your TA: Ziheng Nicholas Victoria

Circle the day of your discussion: Tuesday Thursday

1. Warm Up: Find the general (implicit) solution to

y2exydx+ (exy + xyexy + 1)dy = 0

and solve for y if possible.

2. Integrating Factors: Often times a di↵erential form is not exact, but we can find a function

µ so that

µPdx+ µQdy

is still exact. First, we consider what happens when µ depends only on a single variable:

(a) Assuming that µ(x, y) = µ(y), i.e. that µ depends only on y, find a formula for µ0/µ in

terms of P , Q, and their derivatives.

(b) Consider the form

(ex + xex) dx+

✓
xex

y
+ xex

◆
dy = 0

Compute the function you found in part (a) for this example. Does it depend only on

y? If so, we can find an integration factor that depends only on y. Find this integration

factor.
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(c) Use the integration factor you found in the previous part to solve the ODE.

A second example of integrating factor is when our form is homogeneous, i.e. that

P (tx, ty) = tnP (x, y) and Q(tx, ty) = tnQ (note that this is unrelated to homogeneous

linear ODEs). For concreteness, let’s consider

! = �xydx+ (x2
+ y2)dy

(d) We will use the change of variables y = vx; use the product rule to find dy in terms of

dv and dx.

(e) Use this to find what the di↵erential form is in terms of y and x.

(f) Keeping in mind that separable forms (forms like P (x)dx + Q(v)dv) are exact, find a

function you can divide by to turn this into a separable ODE.

(g) Use this to solve the ODE in terms of v and x.
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(h) Solve the ODE in terms of x and y (implicitly if necessary).

3. Potential Functions A question we often ask in physics and mathematics is when a force is

conservative, and if it is, what the corresponding potential energy is. Since we can interpret

di↵erential forms as vectors, this is a natural questions to ask of forms as well, and gives

us another interpretation of what exact ODEs really are (they are also the most natural

generalization of separable ODEs).

(a) What is the condition for a force to be conservative? (Think in terms of the multi-variable

derivatives, gradient, divergence and curl).

(b) Show that this is equivalent to our condition for exactness.

(c) Use Stokes’ theorem and line integrals to show that this condition implies a potential

function exists (use line integrals to define the potential function, and show that it doesn’t

depend on the path taken using Stokes’ theorem).

(d) The Gravitational and Electric forces both have the form

xdx+ ydy

(x2 + y2)3/2

find the corresponding potential function, and so solve the corresponding ODE.
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4. Challenge/Food for Thought: In the previous example, the form field is not well defined

at the origin. If we allow our forms to not exist at the origin, is the condition for having a

potential function the same? Is

�ydx+ xdy

x2 + y2

conservative?
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