

Final Practice Problems

Written by Victoria Kala

vtkala@math.ucsb.edu

Last updated 11/30/2015

Name: _____ Score: NA

Directions: You may use one 3" \times 5" notecard, however no other outside resources such as books, notes, or calculators are allowed. Write your solutions in your bluebook and clearly mark the problems. If you solve a problem multiple times, cross out the work you do not want graded, otherwise you will receive little or no partial credit. Unless otherwise specified, numbers included in a solution are not to be approximated, but instead expressed as exact numbers (i.e., in terms of square roots, multiples of π , etc.).

Disclaimer: The content and level of difficulty of this quiz are not guaranteed to be in correlation with the midterm nor final examinations in any form.

1. Find the vector \mathbf{x} determined by the given coordinate vector \mathbf{x}_B and given basis B :

$$(a) B = \left\{ \begin{pmatrix} 3 \\ -5 \end{pmatrix}, \begin{pmatrix} -4 \\ 6 \end{pmatrix} \right\}, \mathbf{x}_B = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$

$$(b) B = \left\{ \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix}, \begin{pmatrix} 4 \\ -7 \\ 3 \end{pmatrix} \right\}, \mathbf{x}_B = \begin{pmatrix} -4 \\ 8 \\ -7 \end{pmatrix}$$

2. Find the coordinate vector \mathbf{x}_B of the given vector \mathbf{x} relative to the given basis B :

$$(a) B = \left\{ \begin{pmatrix} 1 \\ -3 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \end{pmatrix} \right\}, \mathbf{x} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$(b) B = \left\{ \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 8 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \right\}, \mathbf{x} = \begin{pmatrix} 3 \\ -5 \\ 4 \end{pmatrix}$$

3. Find the change of coordinates matrix from B to C and the change of coordinates matrix from C to B where

$$B = \left\{ \begin{pmatrix} -1 \\ 8 \end{pmatrix}, \begin{pmatrix} 1 \\ -5 \end{pmatrix} \right\}, C = \left\{ \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}.$$

4. Find the dimension of the subspace of all vectors in \mathbb{R}^3 whose first and third entries are equal.

5. Find the dimension of the subspace spanned by the given vectors:

$$\begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 4 \\ 1 \end{pmatrix}, \begin{pmatrix} -8 \\ 6 \\ 5 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 7 \end{pmatrix}$$

6. Find the rank and nullity of $A = \begin{pmatrix} 1 & -6 & 9 & 0 & -2 \\ 0 & 1 & 2 & -4 & 5 \\ 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$.

7. If the null space of a 5×6 matrix A is 4-dimensional, what are the dimensions of the column space and row space of A , and the dimension of the null space of A^T ?

8. Show that if A has eigenvalue $\lambda = 0$ then A^{-1} does not exist.

9. Is $\lambda = 2$ an eigenvalue of $\begin{pmatrix} 3 & 2 \\ 3 & 8 \end{pmatrix}$? Why or why not?

10. Is $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ an eigenvector of $\begin{pmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{pmatrix}$? If so, find the eigenvalue.

11. Find the eigenvalues and eigenvectors of each matrix:

(a) $\begin{pmatrix} 3 & -2 \\ 1 & -1 \end{pmatrix}$

(b) $\begin{pmatrix} 6 & -2 & 0 \\ -2 & 9 & 0 \\ 5 & 8 & 3 \end{pmatrix}$

12. Let A and B be similar matrices. Show that A and B have the same eigenvalues.

13. Diagonalize the matrix $\begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix}$.

14. Let $\mathbf{u} = (2, -1, 1)$ and $\mathbf{v} = (1, 1, 2)$. Find $\mathbf{u} \cdot \mathbf{v}$ and determine the angle θ between \mathbf{u} and \mathbf{v} .

15. Show that $\mathbf{u} = (6, 1, 4)$ and $\mathbf{v} = (2, 0, -3)$ are orthogonal.

16. Find the distance between $\mathbf{u} = (10, -3)$ and $\mathbf{v} = (-1, -5)$.

Problems added 11/30:

17. Let A be a matrix with eigenvalue $\lambda = 2$. Find the eigenvalues of the following:

(a) A^{10}
 (b) A^{-1}
 (c) $A + 4I$
 (d) $100A$

18. Let $\mathbf{u}_1 = (0, 1, 0)$, $\mathbf{u}_2 = (1, 0, 1)$, $\mathbf{u}_3 = (1, 0, -1)$ be vectors in \mathbf{R}^3 .

(a) Show that the set $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal set.
 (b) Convert S into an orthonormal set by normalizing the vectors.

19. In each part, an orthonormal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is given. Find the coordinate vector of \mathbf{w} with respect to that basis. (Use inner products!)

(a) $\mathbf{u}_1 = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right)$, $\mathbf{u}_2 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right)$; $\mathbf{w} = (3, 7)$

(b) $\mathbf{u}_1 = \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3} \right)$, $\mathbf{u}_2 = \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3} \right)$, $\mathbf{u}_3 = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3} \right)$; $\mathbf{w} = (-1, 0, 2)$

20. Determine which of the following matrices are orthogonal:

(a) $\begin{pmatrix} 0 & 1 & 1/\sqrt{2} \\ 1 & 0 & 0 \\ 0 & 0 & 1/\sqrt{2} \end{pmatrix}$

(b) $\begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ 0 & -2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \end{pmatrix}$

21. Find the orthogonal projection of \mathbf{v} onto \mathbf{w} :

(a) $\mathbf{v} = (6, 7)$, $\mathbf{w} = (3, 4)$

(b) $\mathbf{v} = (1, 2, 0)$, $\mathbf{w} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right)$

22. Find the least squares solution of the linear system $A\mathbf{x} = \mathbf{b}$, and find the orthogonal projection of \mathbf{b} onto the column space of A :

(a) $A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \\ -1 & 2 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 7 \\ 0 \\ -7 \end{pmatrix}$

(b) $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -2 \\ 1 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 6 \\ 0 \\ 9 \\ 3 \end{pmatrix}$