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Answers

This page contains answers only. See the following pages for detailed solutions.

1. (a) x =

(
3
−7

)

(b) x =

 0
1
−5


2. (a) xB =

(
8
−5

)

(b) xB =

−2
0
5


3. PB→C =

(
3 −2
−4 3

)
, PC→B =

(
3 2
4 3

)
4. 2

5. 3

6. rank(A) = 3, nullity(A) = 2

7. dim col(A) = 2
dim row(A) = 2
dim null(AT ) = 1

8. See detailed solution

9. Yes

10. Yes, λ = −2

11. (a) λ1 = 1 +
√

2, λ2 = 1−
√

2

v1 =

(
2 +
√

2
1

)
,v2 =

(
2−
√

2
1

)
(b) λ1 = 3, λ2 = 10, λ3 = 5, v1 =0

0
1

 ,v2 =

−7/11
14/11

1

 ,v3 =

2/9
1/9
1



12. See detailed solution

13. A = PDP−1 where P =

(
1 −3/4
1 1

)
,

D =

(
5 0
0 −2

)
14. 3,

π

3

15. See detailed solution

16. 5
√

5

17. (a) 210

(b) 1
2

(c) 6

(d) 200

18. (a) See detailed solution

(b) See detailed solution

19. (a) wB = (−2
√

2, 5
√

2)

(b) wB = (0,−2, 1)

20. (a) Not orthogonal

(b) Orthogonal

21. (a) 46
25 (3, 4)

(b) (1, 1, 1)

22. (a) x̂ =

(
5

1/2

)
, Ax̂ =

11/2
−9/2
−4



(b) x̂ =

12
−3
9

 , Ax̂ =


3
3
9
0


1



Detailed Solutions

1. Find the vector x determined by the given coordinate vector xB and given basis B:

(a) B =

{(
3
−5

)
,

(
−4
6

)}
,xB =

(
5
3

)
Solution. Since B is a basis of R2, for every x ∈ R2 we can write

x = c1b1 + c2b2

where b1,b2 are the basis elements of B. The coordinate vector is the vector xB =
(c1, c2). Since we are given xB = (5, 3), then

x = 5

(
3
−5

)
+ 3

(
−4
6

)
=

(
15
−25

)
+

(
−12
18

)
=

(
3
−7

)
.

(b) B =


−1

2
0

 ,

 3
−5
2

 ,

 4
−7
3

 ,xB =

−4
8
−7


Solution. Since B is a basis of R3, for every x ∈ R3 we can write

x = c1b1 + c2b2 + c3b3

where b1,b2,b3 are the basis elements of B. The coordinate vector is the vector xB =
(c1, c2, c3). Since we are given xB = (−4, 8,−7), then

x = (−4)

−1
2
0

+ 8

 3
−5
2

+ (−7)

 4
−7
3

 =

 4
−8
0

+

 24
−40
16

+

−28
49
−21

 =

 0
1
−5



2. Find the coordinate vector xB of the given vector x relative to the given basis B:

(a) B =

{(
1
−3

)
,

(
2
−5

)}
,x =

(
−2
1

)
Solution. Since B is a basis of R2, for every x ∈ R2 we can write

x = c1b1 + c2b2

where b1,b2 are the basis elements of B. The coordinate vector is the vector xB =
(c1, c2). Since we are given x = (−2, 1), then(

−2
1

)
= c1

(
1
−3

)
+ c2

(
2
−5

)
.
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We can rewrite this system as a matrix equation and use row reduction to solve (you
could also use an inverse to solve):(

1 2 −2
−3 −5 1

)
3R1+R2→R2−−−−−−−−−→

(
1 2 −2
0 1 −5

)
−2R2+R1→R1−−−−−−−−−−→

(
1 0 8
0 1 −5

)

The solution to this system is c1 = 8, c2 = −5, therefore xB =

(
8
−5

)
.

(b) B =


1

0
3

 ,

2
1
8

 ,

 1
−1
2

 ,x =

 3
−5
4


Solution. Since B is a basis of R3, for every x ∈ R3 we can write

x = c1b1 + c2b2 + c3b3

where b1,b2,b3 are the basis elements of B. The coordinate vector is the vector xB =
(c1, c2, c3). Since we are given x = (3,−5, 4), then 3

−5
4

 = c1

1
0
3

+ c2

2
1
8

+ c3

 1
−1
2


We can rewrite this system as a matrix equation and use row reduction to solve (you
could also use an inverse to solve, if it exists): 1 2 1 3

0 1 −1 −5
3 8 2 4

 −3R1+R3→R3−−−−−−−−−−→

 1 2 1 3
0 1 −1 −5
0 2 −1 −5

 −2R2+R3→R3−−−−−−−−−−→

 1 2 1 3
0 1 −1 −5
0 0 1 5


R3+R2→R2−−−−−−−−→

 1 2 1 3
0 1 0 0
0 0 1 5

 −R3+R1→R1−−−−−−−−−→

 1 2 0 −2
0 1 0 0
0 0 1 5


−2R2+R1→R1−−−−−−−−−−→

 1 0 0 −2
0 1 0 0
0 0 1 5


The solution to this system is c1 = −2, c2 = 0, c3 = 5, therefore xB =

−2
0
5

.

3. Find the change of coordinates matrix from B to C and the change of coordinates matrix
from C to B where

B =

{(
−1
8

)
,

(
1
−5

)}
, C =

{(
1
4

)
,

(
1
1

)}
.
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Solution. To find the change of coordinates matrix from B to C, call it PB→C , we set up the
augmented matrix (

c1 c2 b1 b2

)
,

where b1,b2 are the basis elements of B and c1, c2 are the basis elements of C. We then
reduce to get the

(
I PB→C

)
.(

1 1 −1 1
4 1 8 −5

)
−4R1+R2→R2−−−−−−−−−−→

(
1 1 −1 1
0 −3 12 −9

)
− 1

3R2→R2
−−−−−−−→

(
1 1 −1 1
0 1 −4 3

)
−R2+R1→R1−−−−−−−−−→

(
1 0 3 −2
0 1 −4 3

)
.

Thus PB→C =

(
3 −2
−4 3

)
.

To find the change of coordinates matrix from C to B, call it PB→C , we can set up the
augmented matrix (

b1 b2 c1 c2
)
,

and solve using the same method as above, OR we can calculate P−1B→C . I will do the latter,
but feel free to use whichever method you are more comfortable with.

PC→B = P−1B→C =

(
3 −2
−4 3

)−1
=

1

9− 8

(
3 2
4 3

)
=

(
3 2
4 3

)
.

4. Find the dimension of the subspace of all vectors in R3 whose first and third entries are equal.

Solution. There are two ways to approach this problem: one way is to find the basis of this
set, another is to look at what the elements look like. Both approaches are very similar.

We first want to write this set out:

U =


xy
z

 ∈ R3 : x = z


The x = z represents that the first and third entries are equal. Since x = z, substitute this
in to either the first or third equation. Every element in U will look likexy

x

 .

There are two unknowns here (x and y), hence the dimension is 2.

If you want to see what the basis looks like, write it out the element in parametric form:xy
x

 =

1
0
1

x+

0
1
0

 y.
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Therefore the basis of U is the set


1

0
1

 ,

0
1
0

. This set has 2 elements, hence the

dimension is 2.

5. Find the dimension of the subspace spanned by the given vectors: 1
−2
0

 ,

−3
4
1

 ,

−8
6
5

 ,

−3
0
7


Solution. Let U denote the span of the set of vectors above. Recall that the dimension relates
to the basis, and that a basis is the set of linearly independent vectors which span the set.
To find the linearly independent vectors of U , we will form a matrix, reduce, and identify the
columns with pivots (note that these are the same steps to finding the column space!). 1 −3 −8 −3
−2 4 6 0
0 1 5 7

 2R1+R2→R2−−−−−−−−−→

1 −3 −8 −3
0 −2 −10 −6
0 1 5 7

 R1↔R2−−−−−→

1 −3 −8 −3
0 1 5 7
0 −2 −10 −6


2R2+R3→R3−−−−−−−−−→

1 −3 −8 −3
0 1 5 7
0 0 0 8


The number of pivots will tell us the number of elements in our basis for U . Here we have 3
pivots (1st, 2nd, 4th columns), hence dim(U) = 3.

If you want to write out the basis, you will just take the 1st, 2nd, and 4th vectors from U :

U = span


 1
−2
0

 ,

−3
4
1

 ,

−3
0
7


Notice that we have 3 elements in our basis, hence dim(U) = 3.

6. Find the rank and nullity of A =


1 −6 9 0 −2
0 1 2 −4 5
0 0 0 5 1
0 0 0 0 0

.

Solution. The rank is the dimension of the column space, which is just the number of pivots.
We have 3 pivots (1st, 2nd, 5th columns), hence rank(A) = 3. Using the Rank-Nullity
theorem,

nullity(A) = #columns(A)− rank(A) = 5− 3 = 2.

7. If the null space of a 5× 6 matrix A is 4-dimensional, what are the dimensions of the column
space and row space of A, and the dimension of the null space of AT ?
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Solution. Since the nullspace of A is 4-dimensional, then nullity(A) = 4. Using the Rank-
Nullity Theorem,

rank(A) = #columns(A)− nullity(A) = 6− 4 = 2.

The rank is equal to the dimension of the column space and dimension of the row space, hence
these are both 2. The dimension of the null space of AT is

nullity(AT ) = #rows(A)− rank(A) = 5− 4 = 1.

To summarize: dim col(A) = 2,dim row(A) = 2,dim null(AT ) = 1.

8. Show that if A has eigenvalue λ = 0 then A−1 does not exist.

Proof. We will use the eigenvalue equation det(A − λI) = 0. If λ = 0, then this equation
becomes

det(A− 0I) = 0 ⇒ det(A) = 0.

Since det(A) = 0, then A is not invertible, hence A−1 does not exist.

9. Is λ = 2 an eigenvalue of

(
3 2
3 8

)
? Why or why not?

Solution. We will use the eigenvalue equation det(A − λI) = 0. We need to show that if
λ = 2, then

det(A− 2I) = 0.

Start with the left hand side and show we get 0:

det(A− 2I) = det

((
3 2
3 8

)
−
(

2 0
0 2

))
=

∣∣∣∣1 2
3 6

∣∣∣∣ = 1 · 6− 2 · 3 = 0.

Since we got 0, this shows that the eigenvalue equation is satisfied. λ = 2 is indeed an

eigenvalue of

(
3 2
3 8

)
.

10. Is

 1
−2
1

 an eigenvector of

3 6 7
3 3 7
5 6 5

? If so, find the eigenvalue.

Solution. We will use the eigenvalue-eigenvector equation Av = λv. We need to show that if

v =

 1
−2
1

, then this equation is satisfied. Start with the left hand side and show we get a

multiple of v: 3 6 7
3 3 7
5 6 5

 1
−2
1

 =

3− 12 + 7
3− 6 + 7
5− 12 + 5

 =

−2
4
−2

 = −2

 1
−2
1

 .
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Since we got a multiple of v, then v is an indeed an eigenvector of

3 6 7
3 3 7
5 6 5

, and its

eigenvalue is λ = −2.

11. Find the eigenvalues and eigenvectors of each matrix:

(a)

(
3 −2
1 −1

)
Solution. We will use the eigenvalue equation det(A− λI) = 0:

det

((
3 −2
1 −1

)
−
(
λ 0
0 λ

))
=

∣∣∣∣3− λ −2
1 −1− λ

∣∣∣∣ = (3− λ)(−1− λ)− (−2)(1)

= −3− 3λ+ λ+ λ2 + 2 = λ2 − 2λ− 1.

We use the quadratic formula to find the roots of this equation:

λ =
2±

√
4− 4(1)(−1)

2(1)
=

2±
√

8

2
=

2± 2
√

2

2
= 1±

√
2.

Therefore the eigenvalues are λ1 = 1 +
√

2, λ2 = 1−
√

2.

We now find the eigenvectors using the equation (A− λI)v = 0.

When λ1 = 1 +
√

2,(
3− λ1 −2 0

1 −1− λ1 0

)
→
(

3− (1 +
√

2) −2 0

1 −1− (1 +
√

2) 0

)

→
(

2−
√

2 −2 0

1 −2−
√

2 0

)
−(2−

√
2)R2+R1→R1−−−−−−−−−−−−−−→

(
0 0 0

1 −2−
√

2 0

)
x1 is a pivot, x2 is a free variable. The second equation tells us that x1 = (2 +

√
2)x2,

hence the general solution is(
x1
x2

)
=

(
(2 +

√
2)x2

x2

)
=

(
2 +
√

2
1

)
x2.

This shows that λ1 has the eigenvector v1 =

(
2 +
√

2
1

)
.

When λ2 = 1−
√

2,(
3− λ2 −2 0

1 −1− λ2 0

)
→
(

3− (1−
√

2) −2 0

1 −1− (1−
√

2) 0

)

→
(

2 +
√

2 −2 0

1 −2 +
√

2 0

)
−(2+

√
2)R2+R1→R1−−−−−−−−−−−−−−→

(
0 0 0

1 −2 +
√

2 0

)
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x1 is a pivot, x2 is a free variable. The second equation tells us that x1 = (2 −
√

2)x2,
hence the general solution is(

x1
x2

)
=

(
(2−

√
2)x2

x2

)
=

(
2−
√

2
1

)
x2.

This shows that λ2 has the eigenvector v2 =

(
2−
√

2
1

)
.

(b)

 6 −2 0
−2 9 0
5 8 3


Solution. We will use the eigenvalue equation det(A− λI) = 0:

det

 6 −2 0
−2 9 0
5 8 3

−
λ 0 0

0 λ 0
0 0 λ

 =

∣∣∣∣∣∣
6− λ −2 0
−2 9− λ 0
5 8 3− λ

∣∣∣∣∣∣
= (3− λ)

∣∣∣∣6− λ −2
−2 9− λ

∣∣∣∣ = (3− λ) [(6− λ)(9− λ)− (−2)(−2)]

= (3− λ)
[
54− 6λ− 9λ+ λ2 − 4

]
= (3− λ)(λ2 − 15λ− 50)

= (3− λ)(λ− 10)(λ− 5)

Set this equal to 0 and solve for λ. The eigenvalues are λ1 = 3, λ2 = 10, λ3 = 5.

We now find the eigenvectors using the equation (A− λI)v = 0.

When λ1 = 3, 6− λ1 −2 0 0
−2 9− λ1 0 0
5 8 3− λ1 0

→
 6− 3 −2 0 0
−2 9− 3 0 0
5 8 3− 3 0



→

 3 −2 0 0
−2 6 0 0
5 8 0 0

 R1+R2→R1−−−−−−−−→

 1 4 0 0
−2 6 0 0
5 8 0 0

 2R1+R2→R2−−−−−−−−−→

 1 4 0 0
0 14 0 0
5 8 0 0


−5R1+R3→R3−−−−−−−−−−→

 1 4 0 0
0 14 0 0
0 −12 0 0

 1
14R2→R2,− 1

12R3→R3
−−−−−−−−−−−−−−−→

 1 4 0 0
0 1 0 0
0 1 0 0


−R2+R3→R3−−−−−−−−−→

 1 4 0 0
0 1 0 0
0 0 0 0

 −4R2+R1→R1−−−−−−−−−−→

 1 0 0 0
0 1 0 0
0 0 0 0


x1, x2 are pivots. x3 is a free variable. The first equation tells us that x1 = 0, the second
equation tells us that x2 = 0, hence the general solution isx1x2

x3

 =

 0
0
x3

 =

0
0
1

x3.
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This shows that λ1 has the eigenvector v1 =

0
0
1

.

When λ2 = 10, 6− λ2 −2 0 0
−2 9− λ2 0 0
5 8 3− λ2 0

→
 6− 10 −2 0 0

−2 9− 10 0 0
5 8 3− 10 0



→

 −4 −2 0 0
−2 −1 0 0
5 8 −7 0

 −2R2+R1→R1−−−−−−−−−−→

 0 0 0 0
−2 −1 0 0
5 8 −7 0

 R1↔R2−−−−−→

 5 8 −7 0
−2 −1 0 0
0 0 0 0


2R2+R1→R1−−−−−−−−−→

 1 6 −7 0
−2 −1 0 0
0 0 0 0

 2R1+R2→R2−−−−−−−−−→

 1 6 −7 0
0 11 −14 0
0 0 0 0


1
11R2→R2
−−−−−−−→

 1 6 −7 0
0 1 −14/11 0
0 0 0 0

 −6R2+R1→R1−−−−−−−−−−→

 1 0 7/11 0
0 1 −14/11 0
0 0 0 0


x1, x2 are pivots. x3 is a free variable. The first equation tells us that x1 = − 7

11x3, the
second equation tells us that x2 = 14

11x3, hence the general solution isx1x2
x3

 =

−7/11x3
14/11x3
x3

 =

−7/11
14/11

1

x3.

This shows that λ2 has the eigenvector v2 =

−7/11
14/11

1

.

When λ3 = 5, 6− λ3 −2 0 0
−2 9− λ3 0 0
5 8 3− λ3 0

→
 6− 5 −2 0 0
−2 9− 5 0 0
5 8 3− 5 0



→

 1 −2 0 0
−2 4 0 0
5 8 −2 0

 2R1+R2→R2−−−−−−−−−→

 1 −2 0 0
0 0 0 0
5 8 −2 0

 R1↔R3−−−−−→

 1 −2 0 0
5 8 −2 0
0 0 0 0


−5R1+R2→R2−−−−−−−−−−→

 1 −2 0 0
0 18 −2 0
0 0 0 0

 1
18R2→R2
−−−−−−−→

 1 −2 0 0
0 1 −1/9 0
0 0 0 0


2R2+R1→R1−−−−−−−−−→

 1 0 −2/9 0
0 1 −1/9 0
0 0 0 0


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x1, x2 are pivots. x3 is a free variable. The first equation tells us that x1 = 2
9x3, the

second equation tells us that x2 = 1
9x3, hence the general solution isx1x2

x3

 =

2/9x3
1/9x3
x3

 =

2/9
1/9
1

x3.

This shows that λ3 has the eigenvector v3 =

2/9
1/9
1

.

12. Let A and B be similar matrices. Show that A and B have the same eigenvalues.

Proof. Since A and B are similar, there exists an invertible P such that A = PBP−1. To show
that the eigenvalues of A and B are the same, we wish to show that det(A − λI) = B− λI.
Starting from the left hand side,

det(A− λI) = det(PBP−1 − λI) = det(PBP−1 − λPP−1) = det
[
P (BP−1 − λP−1)

]
det
[
P (B − λI)P−1

]
= det(P )det(B − λI)det(P−1) = det(P )det(B − λI)

1

det(P )

= det(B − λI)

Since we have shown that det(A − λI) = det(B − λI), then A and B must have the same
eigenvalues.

13. Diagonalize the matrix

(
2 3
4 1

)
.

Solution. We begin by finding the eigenvalues. We will use the eigenvalue equation det(A−
λI) = 0:

det

((
2 3
4 1

)
−
(
λ 0
0 λ

))
=

∣∣∣∣2− λ 3
4 1− λ

∣∣∣∣ = (2− λ)(1− λ)− 12

= 2− 2λ− λ+ λ2 − 12 = λ2 − 3λ− 10

= (λ− 5)(λ+ 2)

Set this equal to 0 and solve for λ. The eigenvalues are λ1 = 5, λ2 = −2.

We now find the eigenvectors using the equation (A− λI)v = 0:

When λ1 = 5:(
2− λ1 3 0

4 1− λ1 0

)
→
(

2− 5 3 0
4 1− 5 0

)
→
(
−3 3 0
4 −4 0

)
− 1

3R1→R1
−−−−−−−→

(
1 −1 0
4 −4 0

)
−4R1+R2→R2−−−−−−−−−−→

(
1 −1 0
0 0 0

)
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x1 is a pivot, x2 is a free variable. The first equation tells us that x1 = x2, hence the general
solution is (

x1
x2

)
=

(
x2
x2

)
=

(
1
1

)
x2.

This shows that λ1 has eigenvector v1 =

(
1
1

)
.

When λ2 = −2:(
2− λ2 3 0

4 1− λ2 0

)
→
(

2− (−2) 3 0
4 1− (−2) 0

)
→
(

4 3 0
4 3 0

)
−R1+R2→R2−−−−−−−−−→

(
4 3 0
0 0 0

)
1
4R1→R1
−−−−−−→

(
1 3/4 0
0 0 0

)
x1 is a pivot, x2 is a free variable. The first equation tells us that x1 = −3/4x2, hence the
general solution is (

x1
x2

)
=

(
−3/4x2
x2

)
=

(
−3/4

1

)
x2.

This shows that λ2 has the eigenvector v2 =

(
−3/4

1

)
.

We now form the matrix P of eigenvectors and the diagonal matrix D of eigenvalues. You
get to choose the order. I will choose P =

(
v1 v2

)
, which means that λ1 and λ2 will follow

the same order in D:

P =

(
1 −3/4
1 1

)
, D =

(
5 0
0 −2

)
.

We now calculate P−1. You can either set up an augmented matrix or use the equation of
the inverse of a 2× 2 matrix. I will do the latter:

P−1 =
1

(1)(1)− (−3/4)(1)

(
1 3/4
−1 1

)
=

4

7

(
1 3/4
−1 1

)
.

If our calculations are correct, A = PDP−1. Let’s check:

PDP−1 =

(
1 −3/4
1 1

)(
5 0
0 −2

)
4

7

(
1 3/4
−1 1

)
=

4

7

(
1 −3/4
1 1

)(
5 0
0 −2

)(
1 3/4
−1 1

)
=

4

7

(
5 6/4
5 −2

)(
1 3/4
−1 1

)
=

4

7

(
5− 6/4 15/4 + 6/4
5 + 2 15/4− 2

)
=

4

7

(
14/4 21/7

7 7/4

)
=

(
2 3
4 1

)
= A

11



14. Let u = (2,−1, 1) and v = (1, 1, 2). Find u · v and determine the angle θ between u and v.

Solution. The dot product of u and v is

u · v = 2(1)− 1(1) + 1(2) = 2− 1 + 2 = 3.

To determine θ, we will use the fact that

u · v = ||u||||v|| cos θ ⇒ cos θ =
u · v
||u||||v||

.

We now need to find ||u||, ||v|| :

||u|| =
√

22 + (−1)2 + 12 =
√

6

||v|| =
√

11 + 12 + 22 =
√

6

Therefore

cos θ =
u · v
||u||||v||

=
3√
6
√

6
=

3

6
=

1

2
⇒ θ = cos−1

(
1

2

)
=
π

3

15. Show that u = (6, 1, 4) and v = (2, 0,−3) are orthogonal.

Solution. To show that u and v are orthogonal, we need to show that u · v = 0:

u · v = 6(2) + 1(0) + 4(−3) = 12 + 0− 12 = 0.

16. Find the distance between u = (10,−3) and v = (−1,−5).

Solution. The distance between u and v is given by ||u− v||:

||u− v|| = ||(10,−3)− (−1,−5)|| = ||(10− (−1),−3− (−5))|| = ||(11, 2)||

=
√

112 + 22 =
√

121 + 4 =
√

125 = 5
√

5.

Problems added 11/30 :

17. Let A be a matrix with eigenvalue λ = 2. Find the eigenvalues of the following:

(a) A10

12



Solution. We will use the eigenvalue-eigenvector equation Av = λv. Since A has eigen-
value λ = 2, this equation becomes

Av = 2v.

There are two ways to do this problem: You can “ build up” from the above equation,
or you can start with A10 and “break it down”.

“Build up”: Multiply by A on the left on both sides:

A(Av = 2v) ⇒ A2v = 2(Av) ⇒ A2v = 2(2v) ⇒ A2v = 22v.

Multiply by A on the left on both sides again:

A(A2v = 22v) ⇒ A3v = 22(Av) ⇒ A3v = 22(2v) ⇒ A3v = 23v.

Repeat this pattern of multiplying by A on the left. You will get

A10v = 210v.

So A10 has eigenvalue 210.

“Break it down”: Start with A10v:

A10v = A ·A · · ·A · (Av) = A ·A · · ·Acdot2v)

= 2A ·A ·A · (Av) = 2A ·Ac . . . A · 2v
= 22A ·A · · ·Av
...

= 210v.

Again, A10 has eigenvalue 210.

(b) A−1

Solution. We will again use the equation Av = 2v. Multiply by A−1 on both sides:

A−1(Av = 2v) ⇒ v = 2A−1v ⇒ A−1v =
1

2
v

Thus A−1 has eigenvalue 1
2 .

(c) A+ 4I

Solution. We will again use the equation Av = 2v. Add 4Iv onto both sides:

Av + 4Iv = 2v + 4Iv ⇒ (A+ 4I)v = 2v + 4v ⇒ (A+ 4I)v = 6v.

Thus A+ 4I has eigenvalue 6.

(d) 100A

13



Solution. We will again use the equation Av = 2v. Multiply by 100 on both sides:

100(Av = 2v) ⇒ 100Av = 200v.

Thus 100A has eigenvalue 200.

18. Let u1 = (0, 1, 0),u2 = (1, 0, 1),u3 = (1, 0,−1) be vectors in R3.

(a) Show that the set S = {u1,u2,u3} is an orthogonal set.

Proof. We need to show that the dot product of all possible combinations of these vectors
is 0:

u1 · u2 = 0(1) + 1(0) + 0(1) = 0

u1 · u3 = 0(1) + 1(0) + 0(−1) = 0

u2 · u3 = 1(1) + 0(0) + 1(−1) = 1− 1 = 0

Thus S is an orthogonal set.

(b) Convert S into an orthonormal set by normalizing the vectors.

Solution. An orthonormal set is an orthogonal set and contains unit vectors. We showed
in part (a) that S is an orthogonal set. Now we need to normalize the vectors.

First, look at u1:

||u1|| =
√

02 + 12 + 0 = 1

Thus u1 is already a unit vector and we do not need to normalize it.

Next, look at u2:

||u2|| =
√

12 + 02 + 12 =
√

2

u2 is therefore not a unit vector. We define a new vector v2 that is a unit vector:

v2 =
u2

||u2||
=

(1, 0, 1)√
2

=

(
1√
2
, 0,

1√
2

)
.

Now look at u3:
||u3|| =

√
12 + 02 + (−1)2 =

√
2

u3 is therefore not a unit vector. We define a new vector v3 that is a unit vector:

v3 =
u3

||u3||
=

(1, 0,−1)√
2

=

(
1√
2
, 0,− 1√

2

)
.

Thus our orthonormal set is given by S = {u1,v2,v3}.

19. In each part, an orthonormal basis {u1, ...,un} is given. Find the coordinate vector of w with
respect to that basis. (Use inner products!)

(a) u1 =
(

1√
2
,− 1√

2

)
,u2 =

(
1√
2
, 1√

2

)
;w = (3, 7)

14



Solution. Let B denote the basis given. Since B is a basis, then for every w we can write

w = c1u1 + c2u2.

The coordinate vector is wB = (c1, c2). Since B is an orthonormal basis, then we know
that

c1 =
w · u1

u1 · u1
and c2 =

w · u2

u2 · u2
.

These constants are called the scalar projection of w onto u1 and u2, respectively.
Calculate the following dot products:

w · u1 = 3

(
1√
2

)
+ 7

(
− 1√

2

)
=

3− 7√
2

=
−4√

2
= −2 · 2√

2
= −2

√
2

u1 · u1 =
1√
2

(
1√
2

)
− 1√

2

(
− 1√

2

)
=

1

2
+

1

2
= 1

w · u2 = 3

(
1√
2

)
+ 7

(
1√
2

)
=

3 + 7√
2

=
10√

2
=

5 · 2√
2

= 5
√

2

u2 · u2 =
1√
2

(
1√
2

)
+

1√
2

(
1√
2

)
=

1

2
+

1

2
= 1

Note: We should not be surprised that u1 · u1 and u2 · u2 were both 1. Recall that the
definition of the norm is ||u|| =

√
u · u, or, equivalently, u · u = ||u||2. Since we were

given that B is an orthonormal basis, the norms of u1 and u2 are 1, therefore u1 · u1

and u2 · u2 are both 1.

Now we use the formulas for c1 and c2:

c1 =
w · u1

u1 · u1
=
−2
√

2

1
= −2

√
2

c2 = c2 =
w · u2

u2 · u2
=

5
√

2

1
= 5
√

2.

Thus wB = (−2
√

2, 5
√

2).

(b) u1 =
(
2
3 ,−

2
3 ,

1
3

)
,u2 =

(
2
3 ,

1
3 ,−

2
3

)
,u3 =

(
1
3 ,

2
3 ,

2
3

)
;w = (−1, 0, 2)

Solution. Let B denote the basis given. Since B is a basis, then for every w we can write

w = c1u1 + c2u2 + c3u3.

The coordinate vector is wB = (c1, c2, c3). Since B is an orthonormal basis, then we
know that

c1 =
w · u1

u1 · u1
and c2 =

w · u2

u2 · u2
and c3 =

w · u3

u3 · u3
.
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These constants are called the scalar projection of w onto u1, u2, and u3, respectively.
Calculate the following dot products:

w · u1 = −1

(
2

3

)
+ 0

(
−2

3

)
+ 2

(
1

3

)
= 0

u1 · u1 =
2

3

(
2

3

)
− 2

3

(
−2

3

)
+

1

3

(
1

3

)
=

4

9
+

4

9
+

1

9
= 1

w · u2 = −1

(
2

3

)
+ 0

(
1

3

)
+ 2

(
−2

3

)
= −2

3
+ 0− 4

3
= −2

u2 · u2 =
2

3

(
2

3

)
+

1

3

(
1

3

)
− 2

3

(
−2

3

)
=

4

9
+

1

9
+

4

9
= 1

w · u3 = −1

(
1

3

)
+ 0

(
2

3

)
+ 2

(
2

3

)
= −1

3
+ 0 +

4

3
= 1

u3 · u3 =
1

3

(
1

3

)
+

2

3

(
2

3

)
+

2

3

(
2

3

)
=

1

9
+

4

9
+

4

9
= 1

Again, we should not be surprised that u1 · u1, u2 · u2, and u3 · u3 were all equal to 1
(see the note in part (a)).

Now we use the formulas for c1, c2, c3:

c1 =
w · u1

u1 · u1
=

0

1
= 0

c2 =
w · u2

u2 · u2
=
−2

1
= −2

c3 =
w · u3

u3 · u3
=

1

1
= 1

Thus wB = (0,−2, 1).

20. Determine which of the following matrices are orthogonal:

(a)

0 1 1/
√

2
1 0 0

0 0 1/
√

2


Solution. Let Q denote the matrix above. We wish to show that QTQ = I.

QTQ =

0 1 1/
√

2
1 0 0

0 0 1/
√

2

T 0 1 1/
√

2
1 0 0

0 0 1/
√

2


=

 0 1 0
1 0 0

1/
√

2 0 1/
√

2

0 1 1/
√

2
1 0 0

0 0 1/
√

2


=

1 0 0

0 1 1/
√

2

0 1/
√

2 1


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Since QTQ 6= I, then this matrix not orthogonal.

(b)

−1/
√

2 1/
√

6 1/
√

3

0 −2/
√

6 1/
√

3

1/
√

2 1/
√

6 1/
√

3


Solution. Let Q denote the matrix above. We wish to show that QTQ = I.

QTQ =

−1/
√

2 1/
√

6 1/
√

3

0 −2/
√

6 1/
√

3

1/
√

2 1/
√

6 1/
√

3

T −1/
√

2 1/
√

6 1/
√

3

0 −2/
√

6 1/
√

3

1/
√

2 1/
√

6 1/
√

3


=

−1/
√

2 0 1/
√

2

1/
√

6 −2/
√

6 1/
√

6

1/
√

3 1/
√

3 1/
√

3

−1/
√

2 1/
√

6 1/
√

3

0 −2/
√

6 1/
√

3

1/
√

2 1/
√

6 1/
√

3


=

 1/2 + 1/2 −1/
√

12 + 1/
√

12 −1/
√

6 + 1/
√

6

−1/
√

12 + 1/
√

12 1/6 + 4/6 + 1/6 1/
√

18− 2/
√

18 + 1/
√

18

−1/
√

6 + 1/
√

6 1/
√

18− 2/
√

18 + 1/
√

18 1/3 + 1/3 + 1/3


=

1 0 0
0 1 0
0 0 1


Since QTQ = I then Q is orthogonal.

21. Find the orthogonal projection of v onto w:

(a) v = (6, 7),w = (3, 4)

Solution. The orthogonal projection of v onto w is given by

v ·w
w ·w

w

Calculate the following dot products:

v ·w = 6(3) + 7(4) = 18 + 28 = 46

w ·w = 3(3) + 4(4) = 9 + 16 = 25

Hence
v ·w
w ·w

w =
46

25
(3, 4).

(b) v = (1, 2, 0),w =
(

1√
3
, 1√

3
, 1√

3

)
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Solution. The orthogonal projection of v onto w is given by

v ·w
w ·w

w

Calculate the following dot products:

v ·w = 1

(
1√
3

)
+ 2

(
1√
3

)
+ 0

(
1√
3

)
=

3√
3

=
√

3

w ·w =
1√
3

(
1√
3

)
+

1√
3

(
1√
3

)
+

1√
3

(
1√
3

)
=

1

3
+

1

3
+

1

3
= 1

Hence
v ·w
w ·w

w =

√
3

1

(
1√
3
,

1√
3
,

1√
3

)
= (1, 1, 1).

22. Find the least squares solution of the linear system Ax = b, and find the orthogonal projection
of b onto the column space of A:

(a) A =

 1 1
−1 1
−1 2

, b =

 7
0
−7


Solution. Since we are asked to find the least squares solution, we need to solve the
system

ATAx̂ = ATb

for x̂. Find ATA:

ATA =

 1 1
−1 1
−1 2

T  1 1
−1 1
−1 2


=

(
1 −1 −1
1 1 2

) 1 1
−1 1
−1 2


=

(
1 + 1 + 1 1− 1− 2
1− 1− 2 1 + 1 + 4

)
=

(
3 −2
−2 6

)

18



Find ATb:

ATb =

 1 1
−1 1
−1 2

T  7
0
−7


=

(
1 −1 −1
1 1 2

) 7
0
−7


=

(
7 + 0 + 7
7 + 0− 14

)
=

(
14
−7

)
Therefore the system ATAx̂ = ATb is given by(

3 −2
−2 6

)
x̂ =

(
14
−7

)
You can solve this using row reduction or finding an inverse matrix. Let’s do row reduc-
tion:(

3 −2 14
−2 6 −7

)
R1+R2→R1−−−−−−−−→

(
1 4 7
−2 6 −7

)
2R1+R2→R2−−−−−−−−−→

(
1 4 7
0 14 7

)
1
14R2→R2
−−−−−−−→

(
1 4 7
0 1 1/2

)
−4R2+R1→R1−−−−−−−−−−→

(
1 0 5
0 1 1/2

)
therefore x̂ = (5, 1/2). This is the least squares solution.

We now wish to find the orthogonal projection of b onto the column space of A. We do
this by finding Ax̂:  1 1

−1 1
−1 2

( 5
1/2

)
=

 5 + 1/2
−5 + 1/2
−5 + 1

 =

11/2
−9/2
−4

 .

(b) A =


1 0 −1
2 1 −2
1 1 0
1 1 −1

, b =


6
0
9
3


Solution. Since we are asked to find the least squares solution, we need to solve the
system

ATAx̂ = ATb
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for x̂. Find ATA:

ATA =


1 0 −1
2 1 −2
1 1 0
1 1 −1


T 

1 0 −1
2 1 −2
1 1 0
1 1 −1



=

 1 2 1 1
0 1 1 1
−1 −2 0 −1




1 0 −1
2 1 −2
1 1 0
1 1 −1


=

 1 + 4 + 1 + 1 0 + 2 + 1 + 1 −1− 4 + 0− 1
0 + 2 + 1 + 1 0 + 1 + 1 + 1 0− 2 + 0− 1
−1− 4 + 0− 1 0− 2 + 0− 1 1 + 4 + 0 + 1


=

 7 4 −6
4 3 −3
−6 −3 6


Find ATb:

ATb =


1 0 −1
2 1 −2
1 1 0
1 1 −1


T 

6
0
9
3



=

 1 2 1 1
0 1 1 1
−1 −2 0 −1




6
0
9
3


=

 6 + 0 + 9 + 3
0 + 0 + 9 + 3
−6 + 0 + 0− 3


=

18
12
−9


Therefore the system ATAx̂ = ATb is given by 7 4 −6

4 3 −3
−6 −3 6

 x̂ =

18
12
−9

 .

We will solve this system using row reduction: 7 4 −6 18
4 3 −3 12
−6 −3 6 −9

 R1+R3→R1−−−−−−−−→

 1 1 0 9
4 3 −3 12
−6 −3 6 −9


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−4R1+R2→R2−−−−−−−−−−→

 1 1 0 9
0 −1 −3 −24
−6 −3 6 −9

 6R1+R3→R3−−−−−−−−−→

 1 1 0 9
0 −1 −3 −24
0 3 6 45


1
3R3→R3
−−−−−−→

 1 1 0 9
0 −1 −3 −24
0 1 2 15

 R2+R3→R3−−−−−−−−→

 1 1 0 9
0 −1 −3 −24
0 0 −1 −9


−R3→R3−−−−−−→

 1 1 0 9
0 −1 −3 −24
0 0 1 9

 3R3+R2→R2−−−−−−−−−→

 1 1 0 9
0 −1 0 3
0 0 1 9


R1+R2→R1−−−−−−−−→

 1 0 0 12
0 −1 0 3
0 0 1 9

 −R2→R2−−−−−−→

 1 0 0 12
0 1 0 −3
0 0 1 9


therefore x̂ = (12,−3, 9). This is the least squares solution.

We now wish to find the orthogonal projection of b onto the column space of A. We do
this by finding Ax̂:

1 0 −1
2 1 −2
1 1 0
1 1 −1


12
−3
9

 =


12 + 0− 9
24− 3− 18
12− 3 + 0
12− 3− 9

 =


12 + 0− 9
24− 3− 18
12− 3 + 0
12− 3− 9

 =


3
3
9
0

 .
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