

Solutions to Final Practice T/F Questions

Written by Victoria Kala

vtkala@math.ucsb.edu

Last updated 12/05/2015

Circle true (T) or false (F) for each statement below. If the statement is false, show why, provide a counterexample, or correct the statement (where possible).

1. F If A and B are square matrices, then $\det(A + B) = \det A + \det B$.
Find a counterexample.
2. F If A and B are square matrices, then $\det(AB) = \det(A)\det(B)$.
 AB might not be defined.
3. T If A and B are square matrices and AB is defined, then $\det(AB) = \det(A)\det(B)$.
4. F All matrices have an inverse.
5. F All square matrices have an inverse.
Find a counterexample.
6. T All square matrices with nonzero determinant have an inverse.
7. F If A has eigenvalue λ , then A^k has eigenvalue $k\lambda$.
See practice problem #17(a).
8. F For any two matrices A, B , the product AB is always defined.
9. F For any two matrices A, B the sum $A + B$ is always defined.
10. F If A is an $m \times n$ matrix, the Rank-Nullity Theorem states $\text{rank}(A) + \text{nullity}(A) = m$.
How can you correct this statement to make it true?
11. F The following system is consistent:

$$\begin{aligned}x_2 - 4x_3 &= 8 \\2x_1 - 3x_2 + 2x_3 &= 1 \\4x_1 - 8x_2 + 12x_3 &= 1\end{aligned}$$

12. F It is possible for a system of equations to have exactly two solutions.
A system can have either no solution, exactly one solution, or infinitely many solutions.
13. T The following system has a unique solution:

$$\begin{aligned}x_1 - 2x_2 + x_3 &= 0 \\2x_2 - 8x_3 &= 8 \\5x_1 - 5x_3 &= 10\end{aligned}$$

14. F The vector $(3, -1)$ is a solution to the system $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{pmatrix} 1 & 2 \\ -2 & 5 \\ -5 & 6 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 7 \\ 4 \\ -3 \end{pmatrix}$$

15. F Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. The formula for A^{-1} is

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}.$$

How can you correct this statement to make it true?

16. T The general solution of $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{pmatrix} 3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 7 \\ -1 \\ -4 \end{pmatrix}$$

is $\mathbf{x} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} \frac{4}{3} \\ 0 \\ 1 \end{pmatrix} x_3$.

17. T If A is diagonalizable then there exists a D and invertible P such that $A = PDP^{-1}$.

18. T If A is similar to B , then A^k is similar to B^k .

19. T The set of eigenvalues λ of A are the set of values such that $A - \lambda I$ is not invertible.

Look at $\det(A - \lambda I) = 0$.

20. F The following set of vectors are linearly independent:

$$\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \right\}$$

21. F The set of vectors in the previous problem (#17) span \mathbb{R}^2 .

Vectors in \mathbb{R}^3 cannot span \mathbb{R}^2 . *What happens in \mathbb{R}^3 stays in \mathbb{R}^3 .*

22. T If A is an invertible matrix then $\det(A^{-1}) = \frac{1}{\det(A)}$.

23. F All transformations are linear transformations.

Find a counterexample (see Midterm 2 Practice Problems # 2(b)(d)).

24. T The transformation defined by $T(\mathbf{x}) = 3\mathbf{x}$ is a linear transformation.

25. T The matrix representation for the transformation $T(\mathbf{x}) = 3\mathbf{x}$ is $A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$.

26. T If the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution, then $\text{null}(A) = \{\mathbf{0}\}$.

27. F If A and B are invertible matrices then $(AB)^{-1} = A^{-1}B^{-1}$.

28. T If A and B are invertible matrices then $(AB)^{-1} = B^{-1}A^{-1}$.

29. F If the product AB is defined, then $(AB)^T = A^T B^T$.

30. T If the product AB is defined, then $(AB)^T = B^T A^T$.

31. F The set $U = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 : x_1 \geq 0, x_2 \geq 0 \right\}$ is a subspace of \mathbb{R}^2 .

Show the set is not closed under scalar multiplication.

32. F The rank is the dimension of the null space.

33. T The rank is the dimension of the column space.

34. T The rank is the dimension of the row space.

35. T The rank is the number of pivots of a reduced matrix.

36. T The nullity is the number of free variables of a reduced matrix.

37. F The determinant of a matrix is the product of its diagonal entries.

Find a counterexample.

38. T The determinant of a triangular (upper or lower) matrix is the product of its diagonal entries.

39. T
$$\begin{vmatrix} 5 & -7 & 2 & 2 \\ 0 & 3 & 0 & -4 \\ -5 & -8 & 0 & 3 \\ 0 & 5 & 0 & -6 \end{vmatrix} = 20$$

40. T If A is a square matrix then $\det A = \det A^T$.

41. T If $T(\mathbf{x}) = A\mathbf{x}$, then the kernel of T is the null space of A .

42. T The pivot columns of a matrix form the column space of that matrix.

43. T The following set of vectors forms a basis for \mathbb{R}^3 :

$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

44. F The dot product of two vectors is always defined.

What if two vectors have different sizes?

45. T The matrix $\begin{pmatrix} 2 & 3 \\ 3 & -6 \end{pmatrix}$ has the characteristic equation $(\lambda - 3)(\lambda + 7)$.

46. F All square matrices are diagonalizable.

An $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors.

47. F The norm of a vector \mathbf{u} is given by $\|\mathbf{u}\| = \mathbf{u} \cdot \mathbf{u}$.

How can you correct this statement to make it true?

48. T The dot product is defined to be $\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$.

49. T The matrix $U = \begin{pmatrix} 3/\sqrt{11} & -1/\sqrt{6} & -1/\sqrt{66} \\ 1/\sqrt{11} & 2/\sqrt{6} & -4/\sqrt{66} \\ 1/\sqrt{11} & 1/\sqrt{6} & 7/\sqrt{66} \end{pmatrix}$ is orthogonal.

50. T The set of vectors below forms an orthogonal set:

$$\left\{ \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} -1/2 \\ -2 \\ 7/2 \end{pmatrix} \right\}$$