

Midterm 1 Practice Problems

Written by Victoria Kala
vtkala@math.ucsb.edu
Last updated 10/10/2015

Name: _____ Score : NA

Directions: You may use one 3" \times 5" notecard, however no other outside resources such as books, notes, or calculators are allowed. Write your solutions in your bluebook and clearly mark the problems. If you solve a problem multiple times, cross out the ones you do not want graded, otherwise you will receive little or no partial credit. Unless otherwise specified, numbers included in a solution are not to be approximated, but instead expressed as exact numbers (i.e., in terms of square roots, multiples of π , etc.).

Disclaimer: The content and level of difficulty of these practice questions are not guaranteed to be in correlation with the midterm nor final examination in any form.

1. Solve the following systems using row operations:

(a)
$$\begin{aligned} x_1 + x_2 + 2x_3 &= 8 \\ -x_1 - 2x_2 + 3x_3 &= 1 \\ 3x_1 - 7x_2 + 4x_3 &= 10 \end{aligned}$$

(b)
$$\begin{aligned} 2x + 2y + 2z &= 0 \\ -2x + 5y + 2z &= 1 \\ 8x + y + 4z &= -1 \end{aligned}$$

(c)
$$\begin{aligned} -2b + 3c &= 1 \\ 3a + 6b - 3c &= -2 \\ 6a + 6b + 3c &= 5 \end{aligned}$$

2. Let $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix}$.

(a) Find $3\mathbf{v}_1 + 2\mathbf{v}_2 - \mathbf{v}_3$.

(b) Can $\mathbf{b}_1 = \begin{pmatrix} 1 \\ 1 \\ 9 \end{pmatrix}$ be written as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 ? If so, find it.

(c) Can $\mathbf{b}_2 = \begin{pmatrix} 1 \\ -4 \\ 5 \end{pmatrix}$ be written as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 ? If so, find it.

(d) Are \mathbf{b}_1 , \mathbf{b}_2 in $\text{span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$? Use your results from parts (b) and (c).

(e) Does $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ span \mathbb{R}^3 ?

3. Let $\mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 0 \\ -3 \\ 8 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 4 \\ -1 \\ -5 \end{pmatrix}$. Does $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ span \mathbb{R}^3 ? Why or why not?

4. Find the general solution of the system whose augmented matrix is given by

$$(a) \left(\begin{array}{ccccc|c} 1 & -3 & 0 & -1 & 0 & -2 \\ 0 & 1 & 0 & 0 & -4 & 1 \\ 0 & 0 & 0 & 1 & 9 & 4 \end{array} \right)$$

$$(b) \left(\begin{array}{cccccc|c} 1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 & -1 \\ 0 & 0 & 5 & 10 & 0 & 15 & 5 \\ 2 & 6 & 0 & 8 & 4 & 18 & 6 \end{array} \right)$$

5. Show whether the following sets of vectors in \mathbb{R}^3 are linearly independent or linearly dependent.

$$(a) \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} -4 \\ 10 \\ 2 \end{pmatrix}$$

$$(b) \begin{pmatrix} -3 \\ 0 \\ 4 \end{pmatrix}, \begin{pmatrix} 5 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$$

$$(c) \begin{pmatrix} 8 \\ -1 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$$

$$(d) \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}, \begin{pmatrix} 6 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 10 \end{pmatrix}$$