

Midterm 2 Practice Problems

Written by Victoria Kala

vtkala@math.ucsb.edu

Last updated 11/08/2015

Name: _____ Score: NA

Directions: You may use one 3" \times 5" notecard, however no other outside resources such as books, notes, or calculators are allowed. Write your solutions in your bluebook and clearly mark the problems. If you solve a problem multiple times, cross out the work you do not want graded, otherwise you will receive little or no partial credit. Unless otherwise specified, numbers included in a solution are not to be approximated, but instead expressed as exact numbers (i.e., in terms of square roots, multiples of π , etc.).

Disclaimer: The content and level of difficulty of this quiz are not guaranteed to be in correlation with the midterm nor final examinations in any form.

1. Let T be the linear transformation defined by the formula

$$T(x_1, x_2) = (x_2, -x_1, x_1 + 3x_2, x_1 - x_3).$$

- Find the standard matrix A for the linear transformation such that $T(\mathbf{x}) = A\mathbf{x}$.
- Find the image of $(x_1, x_2) = (2, -1)$.
- Find the kernel of T (*Hint:* This is the null space of A).
- Find the range of T (*Hint:* This is the column space of A).

2. Determine whether $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is a linear operator where

- $T(x, y) = (2x + y, x - y)$
- $T(x, y) = (x + 1, y)$
- $T(x, y) = (y, y)$
- $T(x, y) = (\sqrt[3]{x}, \sqrt[3]{y})$

3. Consider the matrices

$$A = \begin{pmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & -1 \\ 0 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{pmatrix}$$

Compute the following (where possible). If the operation is not defined, explain why.

- $B^2 - 2B + I$.
- $3A^T - C$
- BD
- $(AC)D$

(e) $CB - 2A$
(f) B^{-3}
(g) CC^T

4. Find the inverse of $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$.

5. Let $G = \begin{pmatrix} 1 & -5 & -4 \\ 0 & 3 & 4 \\ -3 & 6 & 0 \end{pmatrix}$.

(a) Find $\det(G)$.
(b) Does G^{-1} exist? If so, find it.

6. Let $J = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 3 & 5 & 0 \\ 1 & 3 & 5 & 7 \end{pmatrix}$.

(a) Find $\det(J)$.
(b) Does J^{-1} exist? If so, find it.

7. Let $U = \{(x, y) : x \geq -2, y \leq 1\}$ be a subset of \mathbb{R}^2 . Is U a subspace of \mathbb{R}^2 ? Why or why not?

8. Let $\mathbf{v}_1 = (1, 2, 1)$, $\mathbf{v}_2 = (2, 9, 0)$, $\mathbf{v}_3 = (3, 3, 4)$. Show that the set $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for \mathbb{R}^3 .

9. Let $K = \begin{pmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{pmatrix}$.

(a) Find a basis for the column space of K .
(b) Find a basis for the null space of K .