

Solutions to Midterm 2 Practice Problems

Written by Victoria Kala

vtkala@math.ucsb.edu

Last updated 11/10/2015

Answers

This page contains answers only. Detailed solutions are on the following pages.

1. (a) $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 1 & 3 \\ 1 & -1 \end{pmatrix}$

(b) $T(2, -1) = (-1, -2, -1, 3)$

(c) $\ker(T) = \{\mathbf{0}\}$

(d) $\text{range}(T) = \text{span} \left\{ \begin{pmatrix} 0 \\ -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 3 \\ -1 \end{pmatrix} \right\}$

2. (a) Linear

(b) Not linear

(c) Linear

(d) Not linear

3. (a) $\begin{pmatrix} 9 & -4 \\ 0 & 1 \end{pmatrix}$

(b) $\begin{pmatrix} 8 & -7 & 1 \\ -3 & 5 & -2 \end{pmatrix}$

(c) Undefined

(d) $\begin{pmatrix} 9 & 27 & 42 \\ 31 & 41 & 40 \\ 20 & 34 & 41 \end{pmatrix}$

(e) Undefined

(f) $\frac{1}{8^3} \begin{pmatrix} 8 & 28 \\ 0 & 64 \end{pmatrix}$

(g) $\begin{pmatrix} 21 & 17 \\ 17 & 35 \end{pmatrix}$

4. $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

5. (a) $\det(G) = 0$

(b) G^{-1} does not exist

6. (a) $\det(J) = 105$

(b) $J^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1/3 & 1/3 & 0 & 0 \\ 0 & -1/5 & 1/5 & 0 \\ 0 & 0 & -1/7 & 1/7 \end{pmatrix}$

7. U is not a subspace

8. See detailed solution

9. (a) $\text{col}(K) = \text{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 4 \\ 9 \\ 9 \\ -4 \end{pmatrix}, \begin{pmatrix} 5 \\ 8 \\ 9 \\ -5 \end{pmatrix} \right\}$

(b) $\text{null}(K) = \text{span} \left\{ \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 14 \\ 0 \\ -3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 37 \\ 0 \\ -4 \\ 0 \\ -5 \\ 1 \end{pmatrix} \right\}$

Detailed Solutions

1. Let T be the linear transformation defined by the formula

$$T(x_1, x_2) = (x_2, -x_1, x_1 + 3x_2, x_1 - x_2).$$

(a) Find the standard matrix A for the linear transformation such that $T(\mathbf{x}) = A\mathbf{x}$.

Solution. Recall that the standard matrix A is given by $A = (T(\mathbf{e}_1) \ T(\mathbf{e}_2))$ where $\mathbf{e}_1 = (1, 0)$ and $\mathbf{e}_2 = (0, 1)$. We need to find $T(1, 0)$ and $T(0, 1)$. Using the formula above, we see that

$$T(1, 0) = (0, -1, 1, 1) \quad \text{and} \quad T(0, 1) = (1, 0, 3, -1).$$

$$\text{Therefore } A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 1 & 3 \\ 1 & -1 \end{pmatrix}.$$

Let's check:

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 1 & 3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -x_1 \\ x_1 + 3x_2 \\ x_1 - x_2 \end{pmatrix}$$

This is the same as $T(x_1, x_2)$!

□

(b) Find the image of $(x_1, x_2) = (2, -1)$.

Solution. Use the formula above to find $T(2, -1)$ (or you can use matrix multiplication using the matrix in (a)):

$$T(2, -1) = (-1, -2, -1, 3).$$

□

(c) Find the kernel of T (*Hint:* This is the null space of A).

Solution. The kernel of T is the set of all vectors \mathbf{x} such that $T(\mathbf{x}) = \mathbf{0}$. But, since $T(\mathbf{x}) = A\mathbf{x}$, then we solve $A\mathbf{x} = \mathbf{0}$ (this is the null space of A):

$$\begin{array}{c} \left(\begin{array}{cc|c} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & -1 & 0 \end{array} \right) \xrightarrow{R2+R3 \rightarrow R3} \left(\begin{array}{cc|c} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 3 & 0 \\ 1 & -1 & 0 \end{array} \right) \xrightarrow{R2+R4 \rightarrow R4} \left(\begin{array}{cc|c} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & -1 & 0 \end{array} \right) \\ \xrightarrow{-3R1+R3 \rightarrow R3} \left(\begin{array}{cc|c} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{array} \right) \xrightarrow{R1+R4 \rightarrow R4} \left(\begin{array}{cc|c} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) \end{array}$$

$$\xrightarrow{R2 \leftrightarrow R1} \left(\begin{array}{cc|c} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) \xrightarrow{-R1 \rightarrow R1} \left(\begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$$

□

This shows $x_1 = x_2 = 0$, hence $\mathbf{x} = \mathbf{0}$. This is the only solution to $A\mathbf{x} = \mathbf{0}$, hence

$$\ker(T) = \text{null}(A) = \{\mathbf{0}\}.$$

(d) Find the range of T (*Hint*: This is the column space of A).

Solution. The range of T is the column space of A . The column space of A is the span of the columns:

$$\text{col}(A) = \text{span} \left\{ \begin{pmatrix} 0 \\ -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 3 \\ -1 \end{pmatrix} \right\}.$$

This is the solution.

However, here is another question: is this a basis of the column space? The answer is yes!

We found the reduced row echelon form of A to be $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$. The first and second column each have a pivot, hence the first and second column of A are linearly independent and span the space. □

2. Determine whether $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is a linear operator where

(a) $T(x, y) = (2x + y, x - y)$

Solution. Linear operator means linear transformation. For (a) – (d) we need to show that:

$$T \left(\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} w \\ z \end{pmatrix} \right) = T \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) + T \left(\begin{pmatrix} w \\ z \end{pmatrix} \right)$$

and

$$T \left(c \begin{pmatrix} x \\ y \end{pmatrix} \right) = cT \left(\begin{pmatrix} x \\ y \end{pmatrix} \right).$$

Let's look at addition:

$$\begin{aligned} T \left(\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} w \\ z \end{pmatrix} \right) &= \left(\begin{pmatrix} 2x + y \\ x - y \end{pmatrix} \right) + \left(\begin{pmatrix} 2w + z \\ w - z \end{pmatrix} \right) = \left(\begin{pmatrix} 2x + y + 2w + z \\ x - y + w - z \end{pmatrix} \right) \\ T \left(\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} w \\ z \end{pmatrix} \right) &= T \left(\begin{pmatrix} x + w \\ y + z \end{pmatrix} \right) = \left(\begin{pmatrix} 2(x + w) + (y + z) \\ (x + w) - (y + z) \end{pmatrix} \right) \end{aligned}$$

We see that $T \left(\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} w \\ z \end{pmatrix} \right) = T \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) + T \left(\begin{pmatrix} w \\ z \end{pmatrix} \right)$, and so the first property holds.

Let's look at scalar multiplication:

$$\begin{aligned} T\left(c\begin{pmatrix} x \\ y \end{pmatrix}\right) &= T\begin{pmatrix} cx \\ cy \end{pmatrix} = \begin{pmatrix} 2cx + cy \\ cx - cy \end{pmatrix} \\ cT\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) &= c\begin{pmatrix} 2x + y \\ x - y \end{pmatrix} = \begin{pmatrix} c(2x + y) \\ c(x - y) \end{pmatrix} \end{aligned}$$

We see that $T\left(c\begin{pmatrix} x \\ y \end{pmatrix}\right) = cT\left(\begin{pmatrix} x \\ y \end{pmatrix}\right)$, and so the second property holds.

Thus T is a linear transformation. \square

(b) $T(x, y) = (x + 1, y)$

Solution. Let's look at addition:

$$\begin{aligned} T\begin{pmatrix} x \\ y \end{pmatrix} + T\begin{pmatrix} w \\ z \end{pmatrix} &= \begin{pmatrix} x + 1 \\ y \end{pmatrix} + \begin{pmatrix} w + 1 \\ z \end{pmatrix} = \begin{pmatrix} x + w + 2 \\ y + z \end{pmatrix} \\ T\left(\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} w \\ z \end{pmatrix}\right) &= T\begin{pmatrix} x + w \\ y + z \end{pmatrix} = \begin{pmatrix} x + w + 1 \\ y + z \end{pmatrix} \end{aligned}$$

Therefore $T\left(\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} w \\ z \end{pmatrix}\right) \neq T\begin{pmatrix} x \\ y \end{pmatrix} + T\begin{pmatrix} w \\ z \end{pmatrix}$, and so the first property doesn't hold.

This is enough to show that the transformation is not linear.

It also doesn't hold for scalar multiplication:

$$\begin{aligned} T\left(c\begin{pmatrix} x \\ y \end{pmatrix}\right) &= T\begin{pmatrix} cx \\ cy \end{pmatrix} = \begin{pmatrix} cx + 1 \\ cy \end{pmatrix} \\ cT\begin{pmatrix} x \\ y \end{pmatrix} &= c\begin{pmatrix} x + 1 \\ y \end{pmatrix} = \begin{pmatrix} cx + c \\ cy \end{pmatrix} \end{aligned}$$

Therefore $T\left(c\begin{pmatrix} x \\ y \end{pmatrix}\right) \neq cT\begin{pmatrix} x \\ y \end{pmatrix}$, and so the second property doesn't hold.

Since neither property holds then T is not a linear transformation. (Note: you only need to show that one property fails, so choose whichever one seems easiest to you.) \square

(c) $T(x, y) = (y, y)$

Solution. Let's look at addition:

$$\begin{aligned} T\begin{pmatrix} x \\ y \end{pmatrix} + T\begin{pmatrix} w \\ z \end{pmatrix} &= \begin{pmatrix} y \\ y \end{pmatrix} + \begin{pmatrix} z \\ z \end{pmatrix} = \begin{pmatrix} y + z \\ y + z \end{pmatrix} \\ T\left(\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} w \\ z \end{pmatrix}\right) &= T\begin{pmatrix} x + w \\ y + z \end{pmatrix} = \begin{pmatrix} y + z \\ y + z \end{pmatrix} \end{aligned}$$

We see that $T\left(\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} w \\ z \end{pmatrix}\right) = T\begin{pmatrix} x \\ y \end{pmatrix} + T\begin{pmatrix} w \\ z \end{pmatrix}$, and so the first property holds.

Let's look at scalar multiplication:

$$T \left(c \begin{pmatrix} x \\ y \end{pmatrix} \right) = T \begin{pmatrix} cx \\ cy \end{pmatrix} = \begin{pmatrix} cy \\ cy \end{pmatrix}$$

$$cT \begin{pmatrix} x \\ y \end{pmatrix} = c \begin{pmatrix} y \\ y \end{pmatrix} = \begin{pmatrix} cy \\ cy \end{pmatrix}$$

We see that $T \left(c \begin{pmatrix} x \\ y \end{pmatrix} \right) = cT \begin{pmatrix} x \\ y \end{pmatrix}$, and so the second property holds.

Thus T is a linear transformation. \square

(d) $T(x, y) = (\sqrt[3]{x}, \sqrt[3]{y})$

Solution. Let's look at addition:

$$T \begin{pmatrix} x \\ y \end{pmatrix} + T \begin{pmatrix} w \\ z \end{pmatrix} = \begin{pmatrix} \sqrt[3]{x} \\ \sqrt[3]{y} \end{pmatrix} + \begin{pmatrix} \sqrt[3]{w} \\ \sqrt[3]{z} \end{pmatrix} = \begin{pmatrix} \sqrt[3]{x} + \sqrt[3]{w} \\ \sqrt[3]{y} + \sqrt[3]{z} \end{pmatrix}$$

$$T \left(\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} w \\ z \end{pmatrix} \right) = T \begin{pmatrix} x + w \\ y + z \end{pmatrix} = \begin{pmatrix} \sqrt[3]{x + w} \\ \sqrt[3]{y + z} \end{pmatrix}$$

Therefore $T \left(\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} w \\ z \end{pmatrix} \right) \neq T \begin{pmatrix} x \\ y \end{pmatrix} + T \begin{pmatrix} w \\ z \end{pmatrix}$, and so the first property doesn't hold.

This is enough to show that the transformation is not linear.

It also doesn't hold for scalar multiplication:

$$T \left(c \begin{pmatrix} x \\ y \end{pmatrix} \right) = T \begin{pmatrix} cx \\ cy \end{pmatrix} = \begin{pmatrix} \sqrt[3]{cx} \\ \sqrt[3]{cy} \end{pmatrix}$$

$$cT \begin{pmatrix} x \\ y \end{pmatrix} = c \begin{pmatrix} \sqrt[3]{x} \\ \sqrt[3]{y} \end{pmatrix} = \begin{pmatrix} c \sqrt[3]{x} \\ c \sqrt[3]{y} \end{pmatrix}$$

Therefore $T \left(c \begin{pmatrix} x \\ y \end{pmatrix} \right) \neq cT \begin{pmatrix} x \\ y \end{pmatrix}$, and so the second property doesn't hold.

Since neither property holds then T is not a linear transformation. (Note: you only need to show that one property fails, so choose whichever one seems easiest to you.) \square

3. Consider the matrices

$$A = \begin{pmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & -1 \\ 0 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{pmatrix}$$

Compute the following (where possible). If the operation is not defined, explain why.

(a) $B^2 - 2B + I$.

Solution. B is a 2×2 matrix. B^2 will also be a 2×2 matrix, $2B$ will be a 2×2 matrix, and I will be a 2×2 matrix, therefore $B^2 - 2B + I$ is defined, and

$$\begin{aligned} B^2 - 2B + I &= \begin{pmatrix} 4 & -1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 4 & -1 \\ 0 & 2 \end{pmatrix} - 2 \begin{pmatrix} 4 & -1 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 16 & -6 \\ 0 & 4 \end{pmatrix} + \begin{pmatrix} -8 & 2 \\ 0 & -4 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 9 & -4 \\ 0 & 1 \end{pmatrix} \end{aligned}$$

□

(b) $3A^T - C$

Solution. A is a 3×2 matrix, and so A^T will be a 2×3 matrix. C is also 2×3 matrix, hence $3A^T - C$ is defined, and

$$\begin{aligned} 3A^T - C &= 3 \begin{pmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{pmatrix}^T - \begin{pmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{pmatrix} \\ &= 3 \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{pmatrix} \\ &= \begin{pmatrix} 3 \cdot 3 - 1 & 3 \cdot (-1) - 4 & 3 \cdot 1 - 2 \\ 3 \cdot 0 - 3 & 3 \cdot 2 - 1 & 3 \cdot 1 - 5 \end{pmatrix} \\ &= \begin{pmatrix} 8 & -7 & 1 \\ -3 & 5 & -2 \end{pmatrix} \end{aligned}$$

□

(c) BD

Solution. B is a 2×2 matrix, D is a 3×3 matrix. The number columns of B are not the same as the number rows of D , hence BD is not defined. □

(d) $(AC)D$

Solution. A is a 3×2 matrix, C is a 2×3 matrix. AC is defined and will be a 3×3

matrix. D is a 3×3 matrix, and so $(AC)D$ is defined.

$$\begin{aligned}
(AC)D &= \left(\begin{pmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{pmatrix} \right) \begin{pmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{pmatrix} \\
&= \begin{pmatrix} 3+0 & 12+0 & 6+0 \\ -1+6 & -4+2 & -2+10 \\ 1+3 & 4+1 & 2+5 \end{pmatrix} \begin{pmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{pmatrix} \\
&= \begin{pmatrix} 3 & 12 & 6 \\ 5 & -2 & 8 \\ 4 & 5 & 7 \end{pmatrix} \begin{pmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{pmatrix} \\
&= \begin{pmatrix} 3-12+18 & 15+0+12 & 6+12+24 \\ 5+2+24 & 25+0+16 & 10-2+32 \\ 4-5+21 & 20+0+14 & 8+5+28 \end{pmatrix} \\
&= \begin{pmatrix} 9 & 27 & 42 \\ 31 & 41 & 40 \\ 20 & 34 & 41 \end{pmatrix}
\end{aligned}$$

□

(e) $CB - 2A$

Solution. C is a 2×3 matrix, B is a 2×2 matrix. The number of columns of C is not the same as the number of rows of B , so CB is undefined. Therefore $CB - 2A$ is not defined. □

(f) B^{-3}

Solution. $B^{-3} = (B^{-1})^3$. B^{-1} will be a 2×2 matrix, and will be defined since $\det(B) = 4 \cdot 2 - 0 = 8 \neq 0$, and

$$B^{-1} = \frac{1}{8} \begin{pmatrix} 2 & 1 \\ 0 & 4 \end{pmatrix}.$$

$(B^{-1})^3$ will be a 2×2 matrix and

$$\begin{aligned}
(B^{-1})^3 &= \left(\frac{1}{8} \begin{pmatrix} 2 & 1 \\ 0 & 4 \end{pmatrix} \right)^3 \\
&= \frac{1}{8^3} \begin{pmatrix} 2 & 1 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 4 \end{pmatrix} \\
&= \frac{1}{8^3} \begin{pmatrix} 4 & 6 \\ 0 & 16 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 4 \end{pmatrix} \\
&= \frac{1}{8^3} \begin{pmatrix} 8 & 28 \\ 0 & 64 \end{pmatrix}
\end{aligned}$$

□

(g) CC^T

Solution. C is a 2×3 matrix and C^T is a 3×2 matrix. The number of columns of C match the number of rows of C^T , so CC^T is defined, and

$$\begin{aligned} \begin{pmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{pmatrix}^T &= \begin{pmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 4 & 1 \\ 2 & 5 \end{pmatrix} \\ &= \begin{pmatrix} 1+16+4 & 3+4+10 \\ 3+4+10 & 9+1+25 \end{pmatrix} \\ &= \begin{pmatrix} 21 & 17 \\ 17 & 35 \end{pmatrix} \end{aligned}$$

□

4. Find the inverse of $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$.

Solution. The inverse is well defined since

$$\begin{vmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{vmatrix} = \cos^2 \theta + \sin^2 \theta = 1 \neq 0$$

and

$$\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}^{-1} = \frac{1}{1} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Let's check our solution:

$$\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \cos^2 \theta + \sin^2 \theta & -\sin \theta \cos \theta + \sin \theta \cos \theta \\ -\sin \theta \cos \theta + \sin \theta \cos \theta & \sin^2 \theta + \cos^2 \theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

The other direction works as well. □

5. Let $G = \begin{pmatrix} 1 & -5 & -4 \\ 0 & 3 & 4 \\ -3 & 6 & 0 \end{pmatrix}$.

(a) Find $\det(G)$.

Solution. Let's use cofactor expansion by crossing out the first column:

$$\begin{aligned} \begin{vmatrix} 1 & -5 & -4 \\ 0 & 3 & 4 \\ -3 & 6 & 0 \end{vmatrix} &= 1 \begin{vmatrix} 3 & 4 \\ 6 & 0 \end{vmatrix} - 0 \begin{vmatrix} -5 & -4 \\ 6 & 0 \end{vmatrix} + (-3) \begin{vmatrix} -5 & -4 \\ 3 & 4 \end{vmatrix} \\ &= 1(0 - 24) - 0 - 3(-20 + 12) \\ &= -24 + 24 \\ &= 0 \end{aligned}$$

Thus $\det(G) = 0$. □

(b) Does G^{-1} exist? If so, find it.

Solution. No, G^{-1} does not exist since $\det(G) = 0$. □

6. Let $J = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 3 & 5 & 0 \\ 1 & 3 & 5 & 7 \end{pmatrix}$.

(a) Find $\det(J)$.

Solution. J is a lower triangular matrix, hence the determinant of J is the product of the diagonal entries:

$$\det(J) = 1 \cdot 3 \cdot 5 \cdot 7 = 105.$$

□

(b) Does J^{-1} exist? If so, find it.

Proof. We set up the augmented matrix $(J \quad I)$ and reduce to get $(I \quad J^{-1})$:

$$\begin{array}{c}
 \left(\begin{array}{cccc|cccc} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 3 & 5 & 0 & 0 & 0 & 1 & 0 \\ 1 & 3 & 5 & 7 & 0 & 0 & 0 & 1 \end{array} \right) \xrightarrow{R2-R1 \rightarrow R2} \left(\begin{array}{cccc|cccc} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & -1 & 1 & 0 & 0 \\ 1 & 3 & 5 & 0 & 0 & 0 & 1 & 0 \\ 1 & 3 & 5 & 7 & 0 & 0 & 0 & 1 \end{array} \right) \\
 \xrightarrow{R3-R1 \rightarrow R3} \left(\begin{array}{cccc|cccc} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 3 & 5 & 0 & -1 & 0 & 1 & 0 \\ 1 & 3 & 5 & 7 & 0 & 0 & 0 & 1 \end{array} \right) \xrightarrow{R4-R1 \rightarrow R4} \left(\begin{array}{cccc|cccc} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 3 & 5 & 0 & -1 & 0 & 1 & 0 \\ 0 & 3 & 5 & 7 & -1 & 0 & 0 & 1 \end{array} \right) \\
 \xrightarrow{R3-R2 \rightarrow R3} \left(\begin{array}{cccc|cccc} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 5 & 0 & 0 & -1 & 1 & 0 \\ 0 & 3 & 5 & 7 & -1 & 0 & 0 & 1 \end{array} \right) \xrightarrow{R4-R2 \rightarrow R4} \left(\begin{array}{cccc|cccc} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 5 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 5 & 7 & 0 & -1 & 0 & 1 \end{array} \right) \\
 \xrightarrow{R4-R3 \rightarrow R4} \left(\begin{array}{cccc|cccc} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 5 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 7 & 0 & 0 & -1 & 1 \end{array} \right) \xrightarrow{\frac{1}{3}R2 \rightarrow R2} \left(\begin{array}{cccc|cccc} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1/3 & 1/3 & 0 & 0 \\ 0 & 0 & 5 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 7 & 0 & 0 & -1 & 1 \end{array} \right) \\
 \xrightarrow{\frac{1}{5}R3 \rightarrow R3} \left(\begin{array}{cccc|cccc} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1/3 & 1/3 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1/5 & 1/5 & 0 \\ 0 & 0 & 0 & 7 & 0 & 0 & -1 & 1 \end{array} \right)
 \end{array}$$

$$\xrightarrow{\frac{1}{5}R3 \rightarrow R3} \left(\begin{array}{cccc|cccc} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1/3 & 1/3 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1/5 & 1/5 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1/7 & 1/7 \end{array} \right)$$

□

$$\text{Therefore } J^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1/3 & 1/3 & 0 & 0 \\ 0 & -1/5 & 1/5 & 0 \\ 0 & 0 & -1/7 & 1/7 \end{pmatrix}.$$

Let's check our solution:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ -1/3 & 1/3 & 0 & 0 \\ 0 & -1/5 & 1/5 & 0 \\ 0 & 0 & -1/7 & 1/7 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 3 & 5 & 0 \\ 1 & 3 & 5 & 7 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1/3 + 1/3 & 3/3 & 0 & 0 \\ -1/5 + 1/5 & -3/5 + 3/5 & 5/5 & 0 \\ -1/7 + 1/7 & -3/7 + 3/7 & -5/7 + 5/7 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

The other direction works as well.

7. Let $U = \{(x, y) : x \geq -2, y \leq 1\}$ be a subset of \mathbb{R}^2 . Is U a subspace of \mathbb{R}^2 ? Why or why not?

Solution. You should always sketch the subset whenever possible. U can easily be sketched out (see the figure below, U is the dark shaded set).

We need to verify look at the three properties of a subspace to see if U is a subspace:

(i) The zero vector of \mathbb{R}^2 is $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$. $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in U$ since $0 \geq -2$ and $0 \leq 1$.

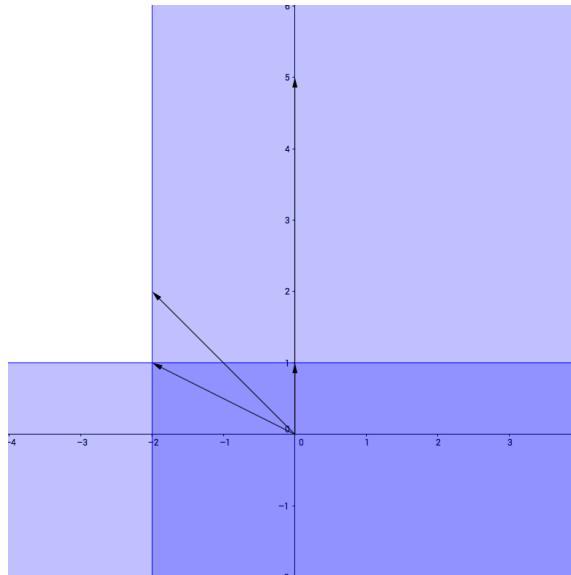
If you are looking at this graphically, you can clearly see that the zero vector is in the set U .

(ii) We need to pick two vectors in U and add them together. Let $\begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} w \\ z \end{pmatrix} \in U$. Then $x \geq -2, w \geq -2, y \leq 1$, and $z \leq 1$. When we add the two vectors together we have $\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} w \\ z \end{pmatrix} = \begin{pmatrix} x+w \\ y+z \end{pmatrix}$. The inequalities will also add together, and we will have $x+w \geq -4$ and $y+z \leq 2$. Since these inequalities are not preserved (they aren't ≥ -2 and ≤ 1), then $\begin{pmatrix} x+w \\ y+z \end{pmatrix} \notin U$, hence U is not closed under addition.

If you are looking at this graphically, you need to find two vectors that when added together they are no longer in the set U . One such example would be the vectors $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$, which are both in U . But their sum is $\begin{pmatrix} -2 \\ 2 \end{pmatrix}$, which is not in U . (These vectors are plotted in the figure below.)

(iii) We need to pick a vector in U and multiply it by a scalar. Let $\begin{pmatrix} x \\ y \end{pmatrix} \in U$ and $c \in \mathbb{R}$. Then $x \geq -2$ and $y \leq 1$. If we multiply c by our vector, we have $\begin{pmatrix} cx \\ cy \end{pmatrix}$. If $c \geq 0$ then our inequalities will be $cx \geq -2c$ and $cy \leq c$; if $c < 0$ then our inequalities will be $cx \leq -2c$ and $cy \geq c$. Since these inequalities are not preserved, then U is not closed under scalar multiplication.

If you are looking at this graphically, you need to find a vector and a scalar such that a scalar multiplied by this vector will no longer be in the set U . One such example would be the vector $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and the scalar 5: $5 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 5 \end{pmatrix} \notin U$. (These vectors are plotted in the figure below.)



Above we showed that U fails under addition and scalar multiplication, therefore U is not a subspace. Showing just one of these fails is enough to show that U is not a subspace. \square

8. Let $\mathbf{v}_1 = (1, 2, 1)$, $\mathbf{v}_2 = (2, 9, 0)$, $\mathbf{v}_3 = (3, 3, 4)$. Show that the set $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for \mathbb{R}^3 .

Solution. To show that S is a basis we need to show that (i) all the vectors in S are linearly independent and (ii) the vectors in S span the space, which in this case is \mathbb{R}^3 .

(i) Linearly Independent: We need to take an arbitrary linear combination and set it equal to the zero vector:

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = \mathbf{0}.$$

We set up an augmented matrix with our vectors as the columns and reduce to solve for c_1, c_2, c_3 :

$$\begin{array}{c}
 \left(\begin{array}{ccc|c} 1 & 2 & 3 & 0 \\ 2 & 9 & 3 & 0 \\ 1 & 0 & 4 & 0 \end{array} \right) \xrightarrow{-2R1+R2 \rightarrow R2} \left(\begin{array}{ccc|c} 1 & 2 & 3 & 0 \\ 0 & 5 & -3 & 0 \\ 1 & 0 & 4 & 0 \end{array} \right) \xrightarrow{-R1+R3 \rightarrow R3} \left(\begin{array}{ccc|c} 1 & 2 & 3 & 0 \\ 0 & 5 & -3 & 0 \\ 0 & -2 & 1 & 0 \end{array} \right) \\
 \xrightarrow{2R3+R2 \rightarrow R2} \left(\begin{array}{ccc|c} 1 & 2 & 3 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -2 & 1 & 0 \end{array} \right) \xrightarrow{2R2+R3 \rightarrow R3} \left(\begin{array}{ccc|c} 1 & 2 & 3 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 0 \end{array} \right) \\
 \xrightarrow{-R3 \rightarrow R3} \left(\begin{array}{ccc|c} 1 & 2 & 3 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right)
 \end{array}$$

This is enough for us to solve the system. This shows that $c_3 = c_2 = c_1 = 0$. This proves that the set of vectors in S are linearly independent.

(ii) Span: In the previous part we showed that the matrix formed by $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ has a pivot in every row. This implies that these vectors span \mathbb{R}^3 .

You can also use the fact that a set of n linearly independent vectors spans \mathbb{R}^n .

□

9. Let $K = \begin{pmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{pmatrix}$.

(a) Find a basis for the column space of K .

Solution. The column space of K is the spanning set of all the columns of K :

$$col(K) = \text{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} -3 \\ -6 \\ -6 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 9 \\ 9 \\ -4 \end{pmatrix}, \begin{pmatrix} -2 \\ -1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 5 \\ 8 \\ 9 \\ -5 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \\ 7 \\ -4 \end{pmatrix} \right\}$$

However, we are asked to find the **basis** of $col(K)$, which means we only want to find the linearly independent vectors in this set. We will do this by reducing K :

$$\begin{array}{c}
 \left(\begin{array}{cccccc} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{array} \right) \xrightarrow{-2R1+R2 \rightarrow R2} \left(\begin{array}{cccccc} 1 & -3 & 4 & -2 & 5 & 4 \\ 0 & 0 & 1 & 3 & -2 & -6 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{array} \right) \\
 \xrightarrow{-2R1+R3 \rightarrow R3} \left(\begin{array}{cccccc} 1 & -3 & 4 & -2 & 5 & 4 \\ 0 & 0 & 1 & 3 & -2 & -6 \\ 0 & 0 & 1 & 3 & -1 & -1 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{array} \right) \xrightarrow{R1+R3 \rightarrow R1} \left(\begin{array}{cccccc} 1 & -3 & 4 & -2 & 5 & 4 \\ 0 & 0 & 1 & 3 & -2 & -6 \\ 0 & 0 & 1 & 3 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right)
 \end{array}$$

$$\begin{array}{ccccccc}
 & \xrightarrow{-R2+R3 \rightarrow R3} & \left(\begin{array}{cccccc} 1 & -3 & 4 & -2 & 5 & 4 \\ 0 & 0 & 1 & 3 & -2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right) & \xrightarrow{2R3+R2 \rightarrow R2} & \left(\begin{array}{cccccc} 1 & -3 & 4 & -2 & 5 & 4 \\ 0 & 0 & 1 & 3 & 0 & 4 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right) \\
 \\ & \xrightarrow{-5R3+R1 \rightarrow R1} & \left(\begin{array}{cccccc} 1 & -3 & 4 & -2 & 0 & -21 \\ 0 & 0 & 1 & 3 & 0 & 4 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right) & \xrightarrow{-4R2+R1 \rightarrow R1} & \left(\begin{array}{cccccc} 1 & -3 & 0 & -14 & 0 & -37 \\ 0 & 0 & 1 & 3 & 0 & 4 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right)
 \end{array}$$

The columns with pivots are the 1st, 3rd, and 5th columns. This means that the 1st, 3rd, and 5th columns of K will form the basis of the column space of K :

$$col(K) = \text{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 4 \\ 9 \\ 9 \\ -4 \end{pmatrix}, \begin{pmatrix} 5 \\ 8 \\ 9 \\ -5 \end{pmatrix} \right\}$$

□

(b) Find a basis for the null space of K .

Solution. We need to find all the vectors \mathbf{x} such that $K\mathbf{x} = \mathbf{0}$. We do this by reducing the augmented matrix $(K \quad \mathbf{0})$. We already reduced the matrix in part (a):

$$\left(\begin{array}{cccccc|c} 1 & -3 & 0 & -14 & 0 & -37 & 0 \\ 0 & 0 & 1 & 3 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

The columns with pivots are associated with x_1, x_3, x_5 . The free variables are x_2, x_4, x_6 . We set $x_2 = s, x_4 = t, x_6 = u$ for $s, t, u \in \mathbb{R}$. We now solve for x_1, x_3, x_5 in terms of the free variables. From the third row, we have:

$$x_5 + 5x_6 = 0 \quad \Rightarrow \quad x_5 = -5x_6$$

From the second row we have:

$$x_3 + 3x_4 + 4x_6 = 0 \quad \Rightarrow \quad x_3 = -3t - 4u$$

From the first row we have:

$$x_1 - 3x_2 - 14x_4 - 37x_6 \quad \Rightarrow \quad x_1 = 3s + 14t + 37u$$

We write our solution out in parametric form:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 3s + 14t + 37u \\ s \\ -3t - 4u \\ t \\ -5u \\ u \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} s + \begin{pmatrix} 14 \\ 0 \\ -3 \\ 1 \\ 0 \\ 0 \end{pmatrix} t + \begin{pmatrix} 37 \\ 0 \\ -4 \\ 0 \\ -5 \\ 1 \end{pmatrix} u$$

This is the spanning set for null space of K :

$$\text{null}(K) = \text{span} \left\{ \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 14 \\ 0 \\ -3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 37 \\ 0 \\ -4 \\ 0 \\ -5 \\ 1 \end{pmatrix} \right\}$$