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Answers

This page contains answers only. Detailed solutions are on the following pages.

1. (a) A =


0 1
−1 0
1 3
1 −1


(b) T (2,−1) = (−1,−2,−1, 3)

(c) ker(T ) = {0}

(d) range(T ) = span




0
−1
1
1

 ,


1
0
3
−1




2. (a) Linear

(b) Not linear

(c) Linear

(d) Not linear

3. (a)

(
9 −4
0 1

)
(b)

(
8 −7 1
−3 5 −2

)
(c) Undefined

(d)

 9 27 42
31 41 40
20 34 41


(e) Undefined

(f)
1

83

(
8 28
0 64

)

(g)

(
21 17
17 35

)

4.

(
cos θ − sin θ
sin θ cos θ

)
5. (a) det(G) = 0

(b) G−1 does not exist

6. (a) det(J) = 105

(b) J−1 =


1 0 0 0
−1/3 1/3 0 0

0 −1/5 1/5 0
0 0 −1/7 1/7


7. U is not a subspace

8. See detailed solution

9. (a) col(K) = span




1
2
2
−1

 ,


4
9
9
−4

 ,


5
8
9
−5




(b) null(K) = span




3
1
0
0
0
0

 ,


14
0
−3
1
0
0

 ,


37
0
−4
0
−5
1




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Detailed Solutions

1. Let T be the linear transformation defined by the formula

T (x1, x2) = (x2,−x1, x1 + 3x2, x1 − x2).

(a) Find the standard matrix A for the linear transformation such that T (x) = Ax.

Solution. Recall that the standard matrix A is given by A =
(
T (e1) T (e2)

)
where

e1 = (1, 0) and e2 = (0, 1). We need to find T (1, 0) and T (0, 1). Using the formula
above, we see that

T (1, 0) = (0,−1, 1, 1) and T (0, 1) = (1, 0, 3,−1).

Therefore A =


0 1
−1 0
1 3
1 −1

 .

Let’s check: 
0 1
−1 0
1 3
1 −1

(x1x2
)

=


x2
−x1

x1 + 3x2
x1 − x2


This is the same as T (x1, x2)!

(b) Find the image of (x1, x2) = (2,−1).

Solution. Use the formula above to find T (2,−1) (or you can use matrix multiplication
using the matrix in (a)):

T (2,−1) = (−1,−2,−1, 3).

(c) Find the kernel of T (Hint : This is the null space of A).

Solution. The kernel of T is the set of all vectors x such that T (x) = 0. But, since
T (x) = Ax, then we solve Ax = 0 (this is the null space of A):

0 1 0
−1 0 0
1 3 0
1 −1 0

 R2+R3→R3−−−−−−−−→


0 1 0
−1 0 0
0 3 0
1 −1 0

 R2+R4→R4−−−−−−−−→


0 1 0
−1 0 0
0 3 0
0 −1 0



−3R1+R3→R3−−−−−−−−−−→


0 1 0
−1 0 0
0 0 0
0 −1 0

 R1+R4→R4−−−−−−−−→


0 1 0
−1 0 0
0 0 0
0 0 0


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R2↔R1−−−−−→


−1 0 0
0 1 0
0 0 0
0 0 0

 −R1→R1−−−−−−→


1 0 0
0 1 0
0 0 0
0 0 0



This shows x1 = x2 = 0, hence x = 0. This is the only solution to Ax = 0, hence

ker(T ) = null(A) = {0}.

(d) Find the range of T (Hint : This is the column space of A).

Solution. The range of T is the column space of A. The column space of A is the span
of the columns:

col(A) = span




0
−1
1
1

 ,


1
0
3
−1


 .

This is the solution.

However, here is another question: is this a basis of the column space? The answer is yes!

We found the reduced row echelon form of A to be


1 0
0 1
0 0
0 0

. The first and second column

each have a pivot, hence the first and second column of A are linearly independent and
span the space.

2. Determine whether T : R2 → R2 is a linear operator where

(a) T (x, y) = (2x+ y, x− y)

Solution. Linear operator means linear transformation. For (a) − (d) we need to show
that:

T

((
x
y

)
+

(
w
z

))
= T

(
x
y

)
+ T

(
w
z

)
and

T

(
c

(
x
y

))
= cT

(
x
y

)
.

Let’s look at addition:

T

(
x
y

)
+ T

(
w
z

)
=

(
2x+ y
x− y

)
+

(
2w + z
w − z

)
=

(
2x+ y + 2w + z
x− y + w − z

)
T

((
x
y

)
+

(
w
z

))
= T

(
x+ w
y + z

)
=

(
2(x+ w) + (y + z)
(x+ w)− (y + z)

)

We see that T

((
x
y

)
+

(
w
z

))
= T

(
x
y

)
+ T

(
w
z

)
, and so the first property holds.
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Let’s look at scalar multiplication:

T

(
c

(
x
y

))
= T

(
cx
cy

)
=

(
2cx+ cy
cx− cy

)
cT

((
x
y

))
= c

(
2x+ y
x− y

)
=

(
c(2x+ y)
c(x− y)

)

We see that T

(
c

(
x
y

))
= cT

(
x
y

)
, and so the second property holds.

Thus T is a linear transformation.

(b) T (x, y) = (x+ 1, y)

Solution. Let’s look at addition:

T

(
x
y

)
+ T

(
w
z

)
=

(
x+ 1
y

)
+

(
w + 1
z

)
=

(
x+ w + 2
y + z

)
T

((
x
y

)
+

(
w
z

))
= T

(
x+ w
y + z

)
=

(
x+ w + 1
y + z

)

Therefore T

((
x
y

)
+

(
w
z

))
6= T

(
x
y

)
+ T

(
w
z

)
, and so the first property doesn’t hold.

This is enough to show that the transformation is not linear.

It also doesn’t hold for scalar multiplication:

T

(
c

(
x
y

))
= T

(
cx
cy

)
=

(
cx+ 1
cy

)
cT

(
x
y

)
= c

(
x+ 1
y

)
=

(
cx+ c
cy

)

Therefore T

(
c

(
x
y

))
6= cT

(
x
y

)
, and so the second property doesn’t hold.

Since neither property holds then T is not a linear transformation. (Note: you only need
to show that one property fails, so choose whichever one seems easiest to you.)

(c) T (x, y) = (y, y)

Solution. Let’s look at addition:

T

(
x
y

)
+ T

(
w
z

)
=

(
y
y

)
+

(
z
z

)
=

(
y + z
y + z

)
T

((
x
y

)
+

(
w
z

))
= T

(
x+ w
y + z

)
=

(
y + z
y + z

)

We see that T

((
x
y

)
+

(
w
z

))
= T

(
x
y

)
+ T

(
w
z

)
, and so the first property holds.
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Let’s look at scalar multiplication:

T

(
c

(
x
y

))
= T

(
cx
cy

)
=

(
cy
cy

)
cT

(
x
y

)
= c

(
y
y

)
=

(
cy
cy

)

We see that T

(
c

(
x
y

))
= cT

(
x
y

)
, and so the second property holds.

Thus T is a linear transformation.

(d) T (x, y) = ( 3
√
x, 3
√
y)

Solution. Let’s look at addition:

T

(
x
y

)
+ T

(
w
z

)
=

(
3
√
x

3
√
y

)
+

(
3
√
w

3
√
z

)
=

(
3
√
x+ 3
√
w

3
√
y + 3
√
z

)
T

((
x
y

)
+

(
w
z

))
= T

(
x+ w
y + z

)
=

(
3
√
x+ w

3
√
y + z

)

Therefore T

((
x
y

)
+

(
w
z

))
6= T

(
x
y

)
+ T

(
w
z

)
, and so the first property doesn’t hold.

This is enough to show that the transformation is not linear.

It also doesn’t hold for scalar multiplication:

T

(
c

(
x
y

))
= T

(
cx
cy

)
=

(
3
√
cx

3
√
cy

)
cT

(
x
y

)
= c

(
3
√
x

3
√
y

)
=

(
c 3
√
x

c 3
√
y

)

Therefore T

(
c

(
x
y

))
6= cT

(
x
y

)
, and so the second property doesn’t hold.

Since neither property holds then T is not a linear transformation. (Note: you only need
to show that one property fails, so choose whichever one seems easiest to you.)

3. Consider the matrices

A =

 3 0
−1 2
1 1

 , B =

(
4 −1
0 2

)
, C =

(
1 4 2
3 1 5

)
, D =

 1 5 2
−1 0 1
3 2 4


Compute the following (where possible). If the operation is not defined, explain why.

(a) B2 − 2B + I.
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Solution. B is a 2× 2 matrix. B2 will also be a 2× 2 matrix, 2B will be a 2× 2 matrix,
and I will be a 2× 2 matrix, therefore B2 − 2B + I is defined, and

B2 − 2B + I =

(
4 −1
0 2

)(
4 −1
0 2

)
− 2

(
4 −1
0 2

)
+

(
1 0
0 1

)
=

(
16 −6
0 4

)
+

(
−8 2
0 −4

)
+

(
1 0
0 1

)
=

(
9 −4
0 1

)

(b) 3AT − C

Solution. A is a 3× 2 matrix, and so AT will be a 2× 3 matrix. C is also 2× 3 matrix,
hence 3AT − C is defined, and

3AT − C = 3

 3 0
−1 2
1 1

T

−
(

1 4 2
3 1 5

)

= 3

(
3 −1 1
0 2 1

)
−
(

1 4 2
3 1 5

)
=

(
3 · 3− 1 3 · (−1)− 4 3 · 1− 2
3 · 0− 3 3 · 2− 1 3 · 1− 5

)
=

(
8 −7 1
−3 5 −2

)

(c) BD

Solution. B is a 2 × 2 matrix, D is a 3 × 3 matrix. The number columns of B are not
the same as the number rows of D, hence BD is not defined.

(d) (AC)D

Solution. A is a 3 × 2 matrix, C is a 2 × 3 matrix. AC is defined and will be a 3 × 3
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matrix. D is a 3× 3 matrix, and so (AC)D is defined.

(AC)D =

 3 0
−1 2
1 1

(1 4 2
3 1 5

) 1 5 2
−1 0 1
3 2 4


=

 3 + 0 12 + 0 6 + 0
−1 + 6 −4 + 2 −2 + 10
1 + 3 4 + 1 2 + 5

 1 5 2
−1 0 1
3 2 4


=

3 12 6
5 −2 8
4 5 7

 1 5 2
−1 0 1
3 2 4


=

3− 12 + 18 15 + 0 + 12 6 + 12 + 24
5 + 2 + 24 25 + 0 + 16 10− 2 + 32
4− 5 + 21 20 + 0 + 14 8 + 5 + 28


=

 9 27 42
31 41 40
20 34 41



(e) CB − 2A

Solution. C is a 2× 3 matrix, B is a 2× 2 matrix. The number of columns of C is not
the same as the number of rows of B, so CB is undefined. Therefore CB − 2A is not
defined.

(f) B−3

Solution. B−3 = (B−1)3. B−1 will be a 2×2 matrix, and will be defined since det(B) =
4 · 2− 0 = 8 6= 0, and

B−1 =
1

8

(
2 1
0 4

)
.

(B−1)3 will be a 2× 2 matrix and

(B−1)3 =

(
1

8

(
2 1
0 4

))3

=
1

83

(
2 1
0 4

)(
2 1
0 4

)(
2 1
0 4

)
=

1

83

(
4 6
0 16

)(
2 1
0 4

)
=

1

83

(
8 28
0 64

)
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(g) CCT

Solution. C is a 2 × 3 matrix and CT is a 3 × 2 matrix. The number of columns of C
match the number of rows of CT , so CCT is defined, and(

1 4 2
3 1 5

)(
1 4 2
3 1 5

)T

=

(
1 4 2
3 1 5

)1 3
4 1
2 5


=

(
1 + 16 + 4 3 + 4 + 10
3 + 4 + 10 9 + 1 + 25

)
=

(
21 17
17 35

)

4. Find the inverse of

(
cos θ sin θ
− sin θ cos θ

)
.

Solution. The inverse is well defined since∣∣∣∣ cos θ sin θ
− sin θ cos θ

∣∣∣∣ = cos2 θ + sin2 θ = 1 6= 0

and (
cos θ sin θ
− sin θ cos θ

)−1
=

1

1

(
cos θ − sin θ
sin θ cos θ

)
=

(
cos θ − sin θ
sin θ cos θ

)
.

Let’s check our solution:(
cos θ sin θ
− sin θ cos θ

)(
cos θ − sin θ
sin θ cos θ

)
=

(
cos2 θ + sin2 θ − sin θ cos θ + sin θ cos θ

− sin θ cos θ + sin θ cos θ sin2 θ + cos2 θ

)
=

(
1 0
0 1

)
The other direction works as well.

5. Let G =

 1 −5 −4
0 3 4
−3 6 0

.

(a) Find det(G).

Solution. Let’s use cofactor expansion by crossing out the first column:∣∣∣∣∣∣
1 −5 −4
0 3 4
−3 6 0

∣∣∣∣∣∣ = 1

∣∣∣∣3 4
6 0

∣∣∣∣− 0

∣∣∣∣−5 −4
6 0

∣∣∣∣+ (−3)

∣∣∣∣−5 −4
3 4

∣∣∣∣
= 1(0− 24)− 0− 3(−20 + 12)

= −24 + 24

= 0
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Thus det(G) = 0.

(b) Does G−1 exist? If so, find it.

Solution. No, G−1 does not exist since det(G) = 0.

6. Let J =


1 0 0 0
1 3 0 0
1 3 5 0
1 3 5 7

.

(a) Find det(J).

Solution. J is a lower triangular matrix, hence the determinant of J is the product of
the diagonal entries:

det(J) = 1 · 3 · 5 · 7 = 105.

(b) Does J−1 exist? If so, find it.

Proof. We set up the augmented matrix
(
J I

)
and reduce to get

(
I J−1

)
:

1 0 0 0 1 0 0 0
1 3 0 0 0 1 0 0
1 3 5 0 0 0 1 0
1 3 5 7 0 0 0 1

 R2−R1→R2−−−−−−−−→


1 0 0 0 1 0 0 0
0 3 0 0 −1 1 0 0
1 3 5 0 0 0 1 0
1 3 5 7 0 0 0 1



R3−R1→R3−−−−−−−−→


1 0 0 0 1 0 0 0
0 3 0 0 −1 1 0 0
0 3 5 0 −1 0 1 0
1 3 5 7 0 0 0 1

 R4−R1→R4−−−−−−−−→


1 0 0 0 1 0 0 0
0 3 0 0 −1 1 0 0
0 3 5 0 −1 0 1 0
0 3 5 7 −1 0 0 1


R3−R2→R3−−−−−−−−→


1 0 0 0 1 0 0 0
0 3 0 0 −1 1 0 0
0 0 5 0 0 −1 1 0
0 3 5 7 −1 0 0 1

 R4−R2→R4−−−−−−−−→


1 0 0 0 1 0 0 0
0 3 0 0 −1 1 0 0
0 0 5 0 0 −1 1 0
0 0 5 7 0 −1 0 1


R4−R3→R4−−−−−−−−→


1 0 0 0 1 0 0 0
0 3 0 0 −1 1 0 0
0 0 5 0 0 −1 1 0
0 0 0 7 0 0 −1 1

 1
3R2→R2
−−−−−−→


1 0 0 0 1 0 0 0
0 1 0 0 −1/3 1/3 0 0
0 0 5 0 0 −1 1 0
0 0 0 7 0 0 −1 1


1
5R3→R3
−−−−−−→


1 0 0 0 1 0 0 0
0 1 0 0 −1/3 1/3 0 0
0 0 1 0 0 −1/5 1/5 0
0 0 0 7 0 0 −1 1


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1
5R3→R3
−−−−−−→


1 0 0 0 1 0 0 0
0 1 0 0 −1/3 1/3 0 0
0 0 1 0 0 −1/5 1/5 0
0 0 0 1 0 0 −1/7 1/7



Therefore J−1 =


1 0 0 0
−1/3 1/3 0 0

0 −1/5 1/5 0
0 0 −1/7 1/7

.

Let’s check our solution:
1 0 0 0
−1/3 1/3 0 0

0 −1/5 1/5 0
0 0 −1/7 1/7




1 0 0 0
1 3 0 0
1 3 5 0
1 3 5 7

 =


1 0 0 0

−1/3 + 1/3 3/3 0 0
−1/5 + 1/5 −3/5 + 3/5 5/5 0
−1/7 + 1/7 −3/7 + 3/7 −5/7 + 5/7 1



=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

The other direction works as well.

7. Let U = {(x, y) : x ≥ −2, y ≤ 1} be a subset of R2. Is U a subspace of R2? Why or why not?

Solution. You should always sketch the subset whenever possible. U can easily be sketched
out (see the figure below, U is the dark shaded set).

We need to verify look at the three properties of a subspace to see if U is a subspace:

(i) The zero vector of R2 is

(
0
0

)
.

(
0
0

)
∈ U since 0 ≥ −2 and 0 ≤ 1.

If you are looking at this graphically, you can clearly see that the zero vector is in the
set U .

(ii) We need to pick two vectors in U and add them together. Let

(
x
y

)
,

(
w
z

)
∈ U . Then

x ≥ −2, w ≥ −2, y ≤ 1, and z ≤ 1. When we add the two vectors together we have(
x
y

)
+

(
w
z

)
=

(
x+ w
y + z

)
. The inequalities will also add together, and we will have

x+w ≥ −4 and y + z ≤ 2. Since these inequalities are not preserved (they aren’t ≥ −2

and ≤ 1), then

(
x+ w
y + z

)
6∈ U , hence U is not closed under addition.

If you are looking at this graphically, you need to find two vectors that when added

together they are no longer in the set U . One such example would be the vectors

(
0
1

)
and

(
−2
1

)
, which are both in U . But their sum is

(
−2
2

)
, which is not in U . (These

vectors are plotted in the figure below.)
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(iii) We need to pick a vector in U and multiply it by a scalar. Let

(
x
y

)
∈ U and c ∈ R.

Then x ≥ −2 and y ≤ 1. If we multiply c by our vector, we have

(
cx
cy

)
. If c ≥ 0 then our

inequalities will be cx ≥ −2c and cy ≤ c; if c < 0 then our inequalities will be cx ≤ −2c
and cy ≥ c. Since these inequalities are not preserved, then U is not closed under scalar
multiplication.

If you are looking at this graphically, you need to find a vector and a scalar such that a
scalar multiplied by this vector will no longer be in the set U . One such example would

be the vector

(
0
1

)
and the scalar 5: 5

(
0
1

)
=

(
0
5

)
6∈ U . (These vectors are plotted in

the figure below.)

Above we showed that U fails under addition and scalar multiplication, therefore U is not a
subspace. Showing just one of these fails is enough to show that U is not a subspace.

8. Let v1 = (1, 2, 1),v2 = (2, 9, 0),v3 = (3, 3, 4). Show that the set S = {v1,v2,v3} is a basis
for R3.

Solution. To show that S is a basis we need to show that (i) all the vectors in S are linearly
independent and (ii) the vectors in S span the space, which in this case is R3.

(i) Linearly Independent: We need to take an arbitrary linear combination and set it equal
to the zero vector:

c1v1 + c2v2 + c3v3 = 0.

11



We set up an augmented matrix with our vectors as the columns and reduce to solve for
c1, c2, c3: 1 2 3 0

2 9 3 0
1 0 4 0

 −2R1+R2→R2−−−−−−−−−−→

 1 2 3 0
0 5 −3 0
1 0 4 0

 −R1+R3→R3−−−−−−−−−→

 1 2 3 0
0 5 −3 0
0 −2 1 0


2R3+R2→R2−−−−−−−−−→

 1 2 3 0
0 1 −1 0
0 −2 1 0

 2R2+R3→R3−−−−−−−−−→

 1 2 3 0
0 1 −1 0
0 0 −1 0


−R3→R3−−−−−−→

 1 2 3 0
0 1 −1 0
0 0 1 0


This is enough for us to solve the system. This shows that c3 = c2 = c1 = 0. This proves
that the set of vectors in S are linearly independent.

(ii) Span: In the previous part we showed that the matrix formed by v1,v2,v3 has a pivot
in every row. This implies that these vectors span R3.

You can also use the fact that a set of n linearly independent vectors spans Rn.

9. Let K =


1 −3 4 −2 5 4
2 −6 9 −1 8 2
2 −6 9 −1 9 7
−1 3 −4 2 −5 −4

.

(a) Find a basis for the column space of K.

Solution. The column space of K is the spanning set of all the columns of K:

col(K) = span




1
2
2
−1

 ,


−3
−6
−6
3

 ,


4
9
9
−4

 ,


−2
−1
−1
2

 ,


5
8
9
−5

 ,


4
2
7
−4




However, we are asked to find the basis of col(K), which means we only want to find
the linearly independent vectors in this set. We will do this by reducing K:

1 −3 4 −2 5 4
2 −6 9 −1 8 2
2 −6 9 −1 9 7
−1 3 −4 2 −5 −4

 −2R1+R2→R2−−−−−−−−−−→


1 −3 4 −2 5 4
0 0 1 3 −2 −6
2 −6 9 −1 9 7
−1 3 −4 2 −5 −4



−2R1+R3→R3−−−−−−−−−−→


1 −3 4 −2 5 4
0 0 1 3 −2 −6
0 0 1 3 −1 −1
−1 3 −4 2 −5 −4

 R1+R3→R1−−−−−−−−→


1 −3 4 −2 5 4
0 0 1 3 −2 −6
0 0 1 3 −1 −1
0 0 0 0 0 0


12



−R2+R3→R3−−−−−−−−−→


1 −3 4 −2 5 4
0 0 1 3 −2 −6
0 0 0 0 1 5
0 0 0 0 0 0

 2R3+R2→R2−−−−−−−−−→


1 −3 4 −2 5 4
0 0 1 3 0 4
0 0 0 0 1 5
0 0 0 0 0 0


−5R3+R1→R1−−−−−−−−−−→


1 −3 4 −2 0 −21
0 0 1 3 0 4
0 0 0 0 1 5
0 0 0 0 0 0

 −4R2+R1→R1−−−−−−−−−−→


1 −3 0 −14 0 −37
0 0 1 3 0 4
0 0 0 0 1 5
0 0 0 0 0 0


The columns with pivots are the 1st, 3rd, and 5th columns. This means that the 1st,
3rd, and 5th columns of K will form the basis of the column space of K:

col(K) = span




1
2
2
−1

 ,


4
9
9
−4

 ,


5
8
9
−5




(b) Find a basis for the null space of K.

Solution. We need to find all the vectors x such that Kx = 0. We do this by reducing
the augmented matrix

(
K 0

)
. We already reduced the matrix in part (a):

1 −3 0 −14 0 −37 0
0 0 1 3 0 4 0
0 0 0 0 1 5 0
0 0 0 0 0 0 0



The columns with pivots are associated with x1, x3, x5. The free variables are x2, x4, x6.
We set x2 = s, x2 = t, x3 = u for s, t, u ∈ R. We now solve for x1, x3, x5 in terms of the
free variables. From the third row, we have:

x5 + 5x6 = 0 ⇒ x5 = −5u

From the second row we have:

x3 + 3x4 + 4x6 = 0 ⇒ x3 = −3t− 4u

From the first row we have:

x1 − 3x2 − 14x4 − 37x6 ⇒ x1 = 3s+ 14t+ 37u

We write our solution out in parametric form:
x1
x2
x3
x4
x5
x6

 =


3s+ 14t+ 37u

s
−3t− 4u

t
−5u
u

 =


3
1
0
0
0
0

 s+


14
0
−3
1
0
0

 t+


37
0
−4
0
−5
1

u
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This is the spanning set for null space of K:

null(K) = span




3
1
0
0
0
0

 ,


14
0
−3
1
0
0

 ,


37
0
−4
0
−5
1




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