

Math 4A: Quiz 5 Solutions

November 21, 2015

1. Find the coordinate vector of \mathbf{p} relative to the basis $S = \{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ where

(a) $\mathbf{p} = 4 - 3x + x^2$; $\mathbf{p}_1 = 1$, $\mathbf{p}_2 = x$, $\mathbf{p}_3 = x^2$

Solution. We can represent the polynomial $p(x) = a_0 + a_1x + a_2x^2$ as the vector (a_0, a_1, a_2) . We want to write \mathbf{p} as a linear combination of $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$:

$$c_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix}$$

By observation we see that $c_1 = 4$, $c_2 = -3$, $c_3 = 1$. Therefore $\mathbf{p}_s = (4, -3, 1)$. \square

(b) $\mathbf{p} = 2 - x + x^2$; $\mathbf{p}_1 = 1 + x$, $\mathbf{p}_2 = 1 + x^2$, $\mathbf{p}_3 = x + x^2$

Solution. We want to write \mathbf{p} as a linear combination of $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$:

$$c_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + c_3 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

We can write this as an augmented matrix and use row reduction to solve:

$$\begin{array}{ccc|c} 1 & 1 & 0 & 2 \\ 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{array} \xrightarrow{-R1+R2 \rightarrow R2} \begin{array}{ccc|c} 1 & 1 & 0 & 2 \\ 0 & -1 & 1 & -3 \\ 0 & 1 & 1 & 1 \end{array} \xrightarrow{R2+R3 \rightarrow R3} \begin{array}{ccc|c} 1 & 1 & 0 & 2 \\ 0 & -1 & 1 & -3 \\ 0 & 0 & 2 & -2 \end{array}$$

$$\xrightarrow{\frac{1}{2}R3 \rightarrow R3} \begin{array}{ccc|c} 1 & 1 & 0 & 2 \\ 0 & -1 & 1 & -3 \\ 0 & 0 & 1 & -1 \end{array} \xrightarrow{R2-R3 \rightarrow R2} \begin{array}{ccc|c} 1 & 1 & 0 & 2 \\ 0 & -1 & 0 & -2 \\ 0 & 0 & 1 & -1 \end{array}$$

$$\xrightarrow{-R2 \rightarrow R2} \begin{array}{ccc|c} 1 & 1 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \end{array} \xrightarrow{R1-R2 \rightarrow R1} \begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \end{array}$$

\square

Thus $c_1 = 0$, $c_2 = 2$, $c_3 = -1$. Therefore $\mathbf{p}_s = (0, 2, -1)$.

2. In each part, use the information in the table to find the dimension of the row space, column space, nullspace of A , and nullspace of A^T :

	(a)	(b)	(c)	(d)	(e)	(f)	(g)
Size of A	3×3	3×3	3×3	5×9	9×5	4×4	6×2
Rank(A)	3	2	1	2	2	0	2

Solution. If A is an $m \times n$ matrix and has rank r , then the dimension of $\text{col}(A) = r$, dimension of $\text{row}(A) = r$, dimension of $\text{null}(A) = n - r$, and dimension of $\text{null}(A^T) = m - r$. See the following table.

dim	(a)	(b)	(c)	(d)	(e)	(f)	(g)
$\text{col}(A)$	3	2	1	2	2	0	2
$\text{row}(A)$	3	2	1	2	2	0	2
$\text{null}(A)$	0	1	2	8	3	4	0
$\text{null}(A^T)$	0	1	2	3	7	4	4

□