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Classification of Differential Equations

The order of a differential equation is the order of the highest derivative that appears in the
equation. For example, the differential equation

d3y

dx3
+ x2y

d5y

dx5
− sin3(xy)

dy

dx
= cot(x)

has order 5.

An ordinary differential equation is said to be linear if it can be written in the form

an(x)y(n) + an−1(x)y(n−1) + ...+ a1(x)y′ + a0(x)y = g(x)

where g(x) and each ai(x) are functions of x and not y. For example, the differential equation

y′′′ + xy2y′ = x4

is not linear because of the term xy2y′.

Separable Equations

A separable equation is a first order linear differential equation that can be written as

dy

dx
= f(x)g(y).

Use the following steps to solve the equation:

1. Write a function of x on one side of the equation and a function of y on the other side of the

equation, e.g. the above equation would look like
dy

g(y)
= f(x)dx.

2. Integrate both sides.

3. Solve for y if possible and C if given an initial value.
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First Order Linear Equations

A first order linear differential equation is of the form

a1(x)
dy

dx
+ a0(x)y = g(x).

Use the following steps to solve the equation:

1. Write the equation in standard form:
dy

dx
+ P (x)y = f(x).

2. Find the integrating factor µ(x) = e
∫
P (x)dx.

3. Multiply the standard equation in Step 1 by µ(x). Your equation can now be written in the
form (µ(x)y)′ = µ(x)f(x).

4. Integrate: µ(x)y =
∫
µ(x)f(x)dx.

5. Solve for y and C if given an initial value: y =

∫
µ(x)f(x)dx

µ(x)
.

Friendly note: While you could just memorize the formula in Step 5, you shouldn’t. It is better
to follow the steps listed above and understand what you are solving rather than just plug in your
functions into a formula.

Exact Equations and Integrating Factors

An equation of the form

M(x, y)dx+N(x, y)dy = 0 or M(x, y) +N(x, y)
dy

dx
= 0

is said to be an exact equation if
∂M

∂y
=
∂N

∂x
. Our goal is to find a function f(x, y) such that:

∂f

∂x
= M(x, y) and

∂f

∂y
= N(x, y).

Use the following steps to solve an exact equation:

1. Verify that My = Nx.

2. Since we want ∂f
∂x = M(x, y), integrate with respect to x:

f(x, y) =

∫
M(x, y)dx+ g(y).
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3. Since we want ∂f
∂y = N(x, y), differentiate what you found in Step (2) with respect to y:

∂

∂y

∫
M(x, y)dx+ g′(y) = N(x, y).

4. Solve for g′(y):

g′(y) = N(x, y)− ∂

∂y

∫
M(x, y)dx

and integrate with respect to y on both sides.

5. Plug your solution for g(y) into your equation for step (2). The solution is f(x, y) = C.

The Existence and Uniqueness Theorem (for first order equations)

Theorem (Existence and Uniqueness Theorem for First Order Linear Equations). If the functions
P and f are continuous on an open interval I : α < t < β containing the point t = t0, then there
exists a unique function y = φ(t) that satisfies the differential equation y′ + P (t)y = f(t) for t in
I, and that also satisfies the initial condition y(t0) = y0, where y0 is an arbitrary prescribed value.

What this means if that P and f are continuous on its domain, and your initial value t0 is in some
interval in that domain, then there exists a unique solution to that differential equation in that
interval.

For example, consider the differential equation

y′ +
1

x− 1
y =

1√
x+ 4

.

P (x) = 1
x−1 and f(x) = 1√

x+4
. The domain of P (x) is everything except x = 1, which we can write

as (−∞, 1) ∪ (1,∞). The domain of f(x) is all numbers greater than -4, or (−4,∞). Taking the
intersection of these domains gives us (−4, 1) ∪ (1,∞). P and f are continuous on this domain.
If we were given the initial value of y(5) = y0, the largest interval that guarantees a solution is
the interval (1,∞) since 5 is in that interval. If we were given the initial value of y(−π) = y0, the
largest interval that guarantees a solution is the interval (−4, 1) since −π is in that interval.

Homogeneous Linear Equations With Constant Coefficients

Consider the special case of the second order equation ay′′+by+cy = 0. We want to find a solution
of the form y = emx, and by substitution this into the equation we get

a(emx)′′ + b(emx)′ + c(emx) = 0 ⇒ am2emx + bmemx + cemx = 0 ⇒ emx(am2 + bm+ c) = 0.
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Since emx never equals zero, we have

am2 + bm+ c = 0

and we can now solve for m. This equation above is called the auxiliary or characteristic equa-
tion of our differential equation.

You don’t need to use this derivation all the time to get the characteristic/auxiliary equation. Just
know that y(n) corresponds with mn; thus an equation of the form

any
(n) + an−1y

(n−1) + ...+ a1y
′ + a0y = 0

has the characteristic/auxiliary equation

anm
n + an−1m

n−1 + ...+ a1m+ a0 = 0.

Use the following steps to solve a homogeneous linear equation with constant coefficients:

1. Write the characteristic/auxiliary equation for the differential equation.

2. Solve for your zeros m.

3. Write the general solution according to the cases below :

(a) If m is real and has multiplicity 1 (distinct from all the other values), then the solution
is of the form cemx.

(b) If m is real and has multiplicity k, then the solution is of the form c1e
mx + c2xe

mx +
...+ ckx

k−1emx.

(c) If m is complex (i.e., m = α+iβ), then the general solution is of the form eαx(c1 cos(βx)+
c2 sin(βx).

Note: you may have one or more of the cases depending on your polynomial. If so, add them
together to form your entire general solution.

4. Solve for your constants if given initial values.

The Wronskian

The Wronskian of a set of functions f1, f2, ..., fn is the determinant

W (f1, f2, ..., fn) =

∣∣∣∣∣∣∣∣∣
f1 f2 ... fn
f ′1 f ′2 ... f ′n
...

...
. . .

...

f
(n−1)
1 f

(n−1)
2 ... f

(n−1)
n

∣∣∣∣∣∣∣∣∣ .
The set of functions f1, f2, ..., fn are said to form a fundamental set of solutions to a differen-
tial equation if and only if they are solutions to that differential equation on some interval and
W (f1, f2, ..., fn) 6= 0 for every x in the solution interval.
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Reduction of Order

Consider the homogeneous linear second-order differential equation

a2(x)y′′ + a1(x)y′ + a0(x)y = 0

and suppose that we know y1 is a solution to the equation above. Using the method of reduction
of order we can find a second solution y2 to the differential equation, where y2(x) = v(x)y1(x).

Use the following steps to solve such an equation using reduction of order:

1. Write the differential equation in standard form: y′′ + P (t)y′ +Q(t)y = 0.

2. Let y2 = vy1. Find y′2 and y′′2 using the product rule, and plug these into the given differential
equation. You should get a second order equation in terms of v:

y1v
′′ + (2y′1 + P (t)y1)v′ = 0.

(Remember to use the fact that y′′ + P (t)y′ +Q(t)y = 0!)

3. Let w = v′, then w = v′′. Plug these into the equation above:

y1w
′ + (2y′1 + P (t)y1)w = 0.

This is a first order linear equation, use the appropriate method to solve for w.

4. Integrate w to find v: v =
∫
wdx.

5. The second solution to the equation is y2 = vy1, and the general solution to the differential
equation is y = c1y1 + c2y2.

Undetermined Coefficients

Consider the nonhomogeneous equation y′′+P (x)y+Q(x)y = g(x) where P (x), Q(x) are constants.
If g(x) is of the type

p(x) = anx
n + ...+ a1x+ a0, p(x)eαx, p(x)eαx sin(βx), p(x)eαx cos(βx),

we can use a method called the “method of undetermined coefficients”. There are actually two
methods using undetermined coefficients, one is a substitution approach and the other is called the
annihilator approach. In these notes I will only be discussing the substitution approach.

Here are some example of the form we use for yp:
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g(x) Form of yp

x3 + x2 + x+ 2 Ax3 +Bx2 + Cx+ E
e5x Ae5x

sin(4x) A sin(4x) +B cos(4x)
x2ex (Ax2 +Bx+ C)ex

5x sin 2x (Ax+B) sin 2x+ (Cx+ E) cos 2x

x2ex sinx (Ax2 +Bx+ C)ex sinx+ (Ex2 + Fx+G)ex cosx

We need to be careful with how we pick yp, however. If g(x) does not have any functions contained
in the solution to the homogeneous equation, then yp is found similar to the equations above. How-
ever, if g(x) does contain functions that are in the general solution, then we must multiply our yp
by xn where n is the smallest integer that eliminates duplication.

For example, consider the equation y′′ − 2y′ + 1 = ex. The general solution to the homogeneous
equation y′′ − 2y′ + 1 = 0 is yc = c1e

x + c2xe
x. Notice, however, that g(x) = ex which is already

in our general solution, so we can’t use yp = ex. If we multiply by x, xex is still in our general
solution, so we need to multiply by x again. Thus the form we would want to use for yp = x2ex.

Use the following steps to solve nonhomogeneous linear equations using the method of undetermined
coefficients:

1. Put into standard form y′′ + P (x)y′ +Q(x) = g(x).

2. Solve the associated homogeneous equation to get the complementary or general solution yc
(or sometimes denoted yh).

3. Find the form of yp using the following cases:

(i) g(x) contains no function of yc

(ii) g(x) contains a function of yc

4. Substitute yp into your equation and solve for the coefficients.

5. The solution to the differential equation is y = yc + yp.

Variation of Parameters

Consider the nonhomogeneous equation y′′+P (x)y+Q(x)y = g(x) where P (x), Q(x) are constants.
We can use a method called Variation of Parameters to solve this equation.

Use the following steps to solve nonhomogeneous linear second order equations using the method
of variation of parameters:

1. Put into standard form y′′ + P (x)y′ +Q(x) = g(x).
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2. Solve the associated homogeneous equation to get the complementary or general solution
yc = c1y1 + c2y2 (or sometimes denoted yh).*

3. Find W , W1, and W2 where

W =

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ , W1 =

∣∣∣∣ 0 y2
g(x) y′2

∣∣∣∣ , W2 =

∣∣∣∣y1 0
y′1 g(x)

∣∣∣∣
4. Find u1, u2 where

u′1 =
W1

W
, u′2 =

W2

W

5. The particular solution is yp = u1y1 + u2y2.

6. The solution to the differential equation is y = yc + yp.

*Sometimes the homogeneous solution to y′′+P (x)y′+Q(x)y = 0 may be given if P,Q are functions
of x rather than constants.

Note: there is also a formula that you may memorize for Variation of Parameters.

Model of Spring System

A spring is described by the equation

mu′′(t) + γu′(t) + ku(t) = f(t)

where m is the mass attached to the end of the spring, γ is the damping or friction constant, k is
the spring constant found from Hooke’s Law (F = k∆x) and f(t) is the external force.

If γ = 0, the system is undamped. If γ 6= 0, and the characteristic equation to the homogeneous
equation has

• two real distinct roots, the system is overdamped.

• one real repeated root, the system is critically damped.

• two complex roots, the system is underdamped.
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Homogeneous Linear Systems

A homogeneous linear first order system will be of the form x′ = Ax. For these notes we will
assume A is a 2× 2 matrix.

We have the following cases:

(i) A has distinct eigenvalues

(ii) A has repeated eigenvalues

(iii) A has complex eigenvalues

Use the following steps to solve:

1. Find the eigenvalues

2. Find the eigenvectors

3. Write the general solution based on the following cases above:

(i) If λ1, λ2 are real, distinct eigenvalues with eigenvectors v1,v2, the general solution is of
the form

x = c1v1e
λ1t + c2v2e

λ2t.

(ii) If λ is a real, repeated eigenvalue with eigenvector v1, the general solution is of the form

x = c1v1e
λt + c2e

λt(v1t+ v2).

where v2 is the generalized eigenvector from the equation (A− Iλ)v2 = v1.

(iii) If λ1, λ2 are complex eigenvalues (they should be complex conjugates) with eigenvectors
v1,v2 (they should be complex conjugates), the general solution is of the form

x = c1Re(v1e
λ1t) + c2Im(v1e

λ1t).

Note: v2e
λ2t will have similar real and imaginary parts which is why we only care about

v1e
λ1t.

Note: It is possible that we can have repeated eigenvalues which return multiple eigenvectors in
larger systems. For example, the system

x′ =

 1 −2 2
−2 1 −2
2 −2 1

x

has an eigenvalue λ = −1 with multiplicity 2 with two linearly independent eigenvectors

v1 =

1
1
0

 , v2 =

0
1
1

 .
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Its general solution is therefore

x = c1

1
1
0

 e−t + c2

0
1
1

 e−t + c3

 1
−1
1

 e5t.

It is when the number of eigenvectors is less than the multiplicity of the eigenvalue that we must
find more eigenvectors using the approach in Case (ii).

For a 3×3 system with eigenvalue λ of multiplicity 3 but only one eigenvector, the general solution
is

x = c1v1e
λt + c2(v1te

λt + v2e
λt) + c3

(
v1
t2

2
eλt + v2te

λt + v3e
λt

)
where (A− λI)v1 = 0, (A− λI)v2 = v1, (A− λI)v3 = v2.

Fundamental Matrices

A fundamental matrix is a matrix of your linearly independent solutions. For example, consider
the system

x′ =

(
1 1
4 1

)
x.

This system has the solution

x = c1

(
1
2

)
e3t + c2

(
1
−2

)
e−t,

therefore the fundamental matrix of this system is

ψ =

(
e3t e−t

2e3t −2e−t

)
.

Undetermined Coefficients for Nonhomogeneous Linear Systems

A nonhomogeneous linear system is of the form x′ = Ax + g(t) where g(t) is a vector. If g(t)
is a polynomial, exponential function, or sine or cosine function, then we can use the method of
undetermined coefficients to make an educated guess about the particular solution xp.

Use the following steps to solve a nonhomgeneous linear system using the method of undetermined
coefficients:

1. Write the equation in standard form: x′ = Ax + g(t).
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2. Find the homogeneous solution xh to the system x′ = Ax.

3. Guess xp using the following cases:

(i) g(t) contains no function in common with xh

(ii) g(t) contains a function in common with xh

4. The solution is x = xh + xp.

Guessing for xp is similar to undetermined coefficients for a nonhomogeneous linear equation with
constant coefficients, however our coefficients are now vectors. See the table below for examples.

g(t) Form of xp(
1
2

)
t2 +

(
10
−3

)
at2 + bt+ c =

(
a1
a2

)
t2 +

(
b1
b2

)
t+

(
c1
c2

)
(

8
0

)
e5t ae5t =

(
a1
a2

)
e5t(

5
1

)
sin 4t+

(
0
−2

)
cos 4t a sin(4t) + b cos(4t) =

(
a1
a2

)
sin 4t+

(
b1
b2

)
cos 4t

Similar to nonhomogeneous linear equations with constant coefficients, we need to be careful if g(t)
contains functions in common with the homogeneous solution xh. However, the rules we used for
constant coefficient equations will not be quite the same for linear systems as seen in the following
two examples.

Example 1. Find the form of xp for the equation x′ = Ax +

(
8
−3

)
given that the homogeneous

solution is xh = c1

(
2
1

)
+ c2e

3t

(
−1
1

)
.

Solution. Since g(t) =

(
8
−3

)
, we would guess xp = a =

(
a1
a2

)
. However, notice that a vector of

constants is already in the solution xh (it’s the term c1

(
2
1

)
). Therefore we must guess

xp = at+ b =

(
a1
a2

)
t+

(
b1
b2

)
.

Example 2. Find the form of xp for the equation x′ = Ax +

(
8
−3

)
+

(
1
5

)
e3t given that the

homogeneous solution is xh = c1

(
2
1

)
+ c2e

3t

(
−1
1

)
.

Solution. Since g(t) =

(
8
−3

)
+

(
1
5

)
e3t, we would guess xp = a+be3t =

(
a1
a2

)
+

(
b1
b2

)
e3t. However,

notice that a vector of constants is already in the solution xh (it’s the term c1

(
2
1

)
) and a vector
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multiplied by e3t is already in the solution xh (it’s the term c2e
3t

(
−1
1

)
). Therefore we must guess

xp = at+ b + cte3t + de3t =

(
a1
a2

)
t+

(
b1
b2

)
+

(
c1
c2

)
te3t +

(
d1
d2

)
e3t.

Stability and Classification of Homogeneous Linear Systems

We will be considering a homogeneous linear system of the form x′ = Ax where A is a 2×2 matrix.
You will need to solve for your eigenvalues of your matrix A. You should also write out the general
solution and sketch a phase plane diagram. If your phase plane diagram “flows inward” and the
the limit as t → ∞ of your solution converges, the solution is stable. If the phase plane diagram
“flows outward” and the limit as t→∞ of your solution diverges, the solution is unstable. Below
are some general cases of classifying the behavior of a homogeneous linear system:

(i) Real and distinct eigenvalues

• If λ1, λ2 are the same sign, we have a node. If they are both positive, then the solution
is unstable (sketch it). If they are both negative, the solution is stable (sketch it).

• If λ1, λ2 are opposite signs, we have a saddle. Saddles are unstable (sketch it).

(ii) Real and repeated eigenvalues

• If λ is a repeated eigenvalue with two eigenvectors we have a star.

• If λ is a repeated eigenvalue with one eigenvector we have a degenerate node. If λ is
negative, the solution is stable. If λ is positive, the solution is unstable.

(iii) Complex eigenvalues

• If the real part is equal to zero, then we have a center.

• If the real part is nonzero, then we have a spiral. If the real part is negative, then the
solution is stable (sketch it). If the real part is positive, the solution is unstable (sketch
it).
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Linearization and Local Stability

Consider the system

dx

dt
= P (x, y)

dy

dt
= Q(x, y)

Equilibrium (or fixed) points are when P (x, y) = 0 and Q(x, y) = 0. The Jacobian matrix J is
defined to be

J =

(
Px Py
Qx Qy

)
.

The Jacobian matrix will help us identify the stability at each equilibrium point.

Use the following steps to classify behavior of equilibrium points of a nonlinear system:

1. Find the equilibrium points (x0, y0) by setting P (x, y) = 0 and Q(x, y) = 0.

2. Find J and evaluate J(x0, y0) at each equilibrium point.

3. Find the eigenvalues of J(x0, y0) at each equilibrium point.

4. Use the eigenvalues to classify the behavior and stability at that equilibrium point (see pre-
vious section on stability and classification).

If you are to sketch the phase plane, plot the equilibrium points. Then find the corresponding
eigenvectors to the eigenvalues and plot the behavior on the graph.
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