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1. x = c1

1
1
0

 e−t + c2

−1
0
1

 e−t + c3

 1
−1
1

 e5t

2. x = c1

1
0
0

 e2t + c2

1
0
0

 te2t +

0
1
0

 e2t

+ c3

1
0
0

 t2

2 e
2t +

0
1
0

 te2t +

 0
− 6

5
1
5

 e2t



3. x = c1

0
1
0

 e6t + c2e
4t

 cos 2t
0

−2 sin 2t

+ c3e
4t

 sin 2t
0

2 cos 2t


4. (a) x = c1

(
1
1

)
et/2 + c2

(
0
1

)
e−t/2

(b) Saddle, unstable

(c) x = 3

(
1
1

)
et/2 + 2

(
0
1

)
e−t/2

5. (a) x = c1

(
2
1

)
e4t + c2e

4t

((
2
1

)
t+

(
−1
0

))
(b) Degenerate node, unstable

(c) x =

(
−1
6

)
e4t +

(
26
13

)
te4t

6. (a) x = c1e
5t

(
cos 2t

cos 2t+ 2 sin 2t

)
+ c2e

5t

(
sin 2t

sin 2t− 2 cos 2t

)
(b) Spiral, unstable

(c) x = e5t
(
−2 cos 2t− 5 sin 2t
8 cos 2t− 9 sin 2t

)

7. x = xh + xp = c1e
3t

(
− 1

3
1

)
+ c2e

7t

(
1
9
1

)
+

(
55
36
− 19

4

)
et

8. (a) (0,−2), (2, 2), (−1,−1)

(b) J =

(
−2x 1

2x− y −x

)
(c) (0,−2) unstable saddle

(2, 2) stable node
(−1,−1) unstable spiral
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Detailed Solutions

1. Solve x′ =

 1 −2 2
−2 1 −2
2 −2 1

x.

Solution. We begin by finding the eigenvalues:∣∣∣∣∣∣
1− λ −2 2
−2 1− λ −2
2 −2 1− λ

∣∣∣∣∣∣ = (1− λ)

∣∣∣∣1− λ −2
−2 1− λ

∣∣∣∣+ 2

∣∣∣∣−2 −2
2 1− λ

∣∣∣∣+ 2

∣∣∣∣−2 1− λ
2 −2

∣∣∣∣
= (1− λ)[(1− λ)(1− λ)− 4] + 2[−2(1− λ) + 4] + 2[4− 2(1− λ)]

= (1− λ)(λ2 − 2λ− 3) + 2(2λ+ 2) + 2(2λ+ 2)

= (1− λ)(λ− 3)(λ+ 1) + 4(λ+ 1) + 4(λ+ 1)

= (λ+ 1) [(1− λ)(λ− 3) + 4 + 4]

= (λ+ 1)
[
−λ2 + 4λ+ 5

]
= −(λ+ 1)(λ+ 1)(λ− 5)

Therefore the eigenvalues are λ = −1 mult. 2, λ = 5.

Now we find the eigenvectors. Start with λ = −1: 1− (−1) −2 2 0
−2 1− (−1) −2 0
2 −2 1− (−1) 0

 ⇒

 2 −2 2 0
−2 2 −2 0
2 −2 2 0

 ⇒

 1 −1 1 0
0 0 0 0
0 0 0 0


We have two rows of zeros, hence we have two free variables. The first row tells us that x1 = x2 − x3.
We can write the general solution of the system as

v =

x1x2
x3

 =

x2 − x3x2
x3

 =

1
1
0

x2 +

−1
0
1

x3

Choose x2 = 1, x3 = 0, and then x2 = 0, x3 = 1 to get the eigenvectors

v1 =

1
1
0

 ,v2 =

−1
0
1


Notice that we have 2 eigenvectors which matches the multiplicity of the eigenvalue λ = −1. This
means two things: we do not need to go find any more eigenvectors, AND we do not need to have a
te−t as part of our solution because we found two independent eigenvectors (i.e. we do not need to
“bump up” the solution). Now we find the eigenvector for when λ = 5: 1− 5 −2 2 0

−2 1− 5 −2 0
2 −2 1− 5 0

 ⇒

 −4 −2 2 0
−2 −4 −2 0
2 −2 −4 0

 ⇒

 1 −1 −2 0
0 1 1 0
0 0 0 0


(We skipped a couple of steps.) The first row tells us that x1 = x2 + 2x3, and the second row tells us
that x2 = −x3. If we choose x3 = 1, then x2 = −1 and x1 = 1. Therefore the third eigenvector is

v3 =

 1
−1
1


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Therefore the general solution is

x = c1

1
1
0

 e−t + c2

−1
0
1

 e−t + c3

 1
−1
1

 e5t.

2. Solve x′ =

2 1 6
0 2 5
0 0 2

x.

Solution. We begin by finding the eigenvalues. Because our matrix is an upper triangular matrix, the
eigenvalues are the diagonal entries, hence λ = 2 mult. 3. We now find the eigenvectors for λ = 2: 2− 2 1 6 0

0 2− 2 5 0
0 0 2− 2 0

 ⇒

 0 1 6 0
0 0 5 0
0 0 0 0


The second row tells us that x3 = 0, and the first row tells us that x2 = −6x3. But this implies that
x2 = 0. x1 is our free variable, so we can choose it to be 1, and we get the eigenvector

v1 =

1
0
0


We only found one eigenvector, which is less than the multiplicity of our eigenvalue. This means two
things: we must find more eigenvectors, and we must have a t2e2t and te2t in our solution (i.e. we
must “bump up” our solution). We find the next eigenvector by solving the equation (A− Iλ)v2 = v1: 0 1 6 1

0 0 5 0
0 0 0 0


The second row tells us x3 = 0, and the first row tells us that x2 = −6x3 +1, which means that x2 = 1.
x1 is free, so if we choose it to be 0 then the second eigenvector is

v2 =

0
1
0


We need to find another eigenvector, so we solve the equation (A− Iλ)v3 = v2: 0 1 6 0

0 0 5 1
0 0 0 0


The second row tells us that x3 = 1

5 , the first row tells us that x2 = −6x3 = − 6
5 . x1 is free, so if we

choose it to be 0 then the third eigenvector is

v3 =

 0
− 6

5
1
5

 .

Therefore the solution is

x = c1

1
0
0

 e2t + c2

1
0
0

 te2t +

0
1
0

 e2t

+ c3

1
0
0

 t2

2
e2t +

0
1
0

 te2t +

 0
− 6

5
1
5

 e2t

 .
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3. Solve x′ =

 4 0 1
0 6 0
−4 0 4

x.

Solution. We begin by finding the eigenvalues:∣∣∣∣∣∣
4− λ 0 1

0 6− λ 0
−4 0 4− λ

∣∣∣∣∣∣ = (4− λ)

∣∣∣∣6− λ 0
0 4− λ

∣∣∣∣− 0 + 1

∣∣∣∣ 0 6− λ
−4 0

∣∣∣∣
= (4− λ)(6− λ)(4− λ) + 4(6− λ)

= (6− λ)[(4− λ)(4− λ) + 4]

= (6− λ)(λ2 − 8λ+ 20)

We use the quadratic formula to find the eigenvalues of λ2 − 8λ+ 20:

λ =
8±

√
64− 4(1)(20)

2
=

8±
√
−16

2
=

8± 4i

2
= 4± 2i

Therefore the eigenvalues are λ1 = 6, λ2 = 4 + 2i, λ3 = 4− 2i. When λ1 = 6: 4− 6 0 1 0
0 6− 6 0 0
−4 0 4− 6 0

 ⇒

 −2 0 1 0
0 0 0 0
−4 0 −2 0

 ⇒

 −2 0 1 0
0 0 0 0
0 0 −4 0


The last row tells us that x3 = 0, the first row tells us that 2x1 = x3 which implies that x1 = 0. x2 is
free, so if we choose it to be 1 then we have the eigenvector

v1 =

0
1
0


When λ2 = 4 + 2i: 4− (4 + 2i) 0 1 0

0 6− (4 + 2i) 0 0
−4 0 4− (4 + 2i) 0

 ⇒

 −2i 0 1 0
0 2− 2i 0 0
−4 0 −2i 0


The second row tells us that (2 − 2i)x2 = 0, or that x2 = 0. The first row tells us that 2ix1 = x3. If
we choose x1 = 1, then we have the eigenvector

v2 =

 1
0
2i

 .

This implies that the third eigenvector is

v3 =

 1
0
−2i

 .

Therefore the solution to the system is

x = c1

0
1
0

 e6t + c2

 1
0
2i

 e(4+2i)t + c3

 1
0
−2i

 e(4−2i)t,
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however we want to write our solution as a real solution. Therefore we must expand v2e
λ2t (you can

also do the same for v3e
λ3t, but it is enough to just do one expansion): 1

0
2i

 e4tei2t =

 1
0
2i

 e4t(cos 2t+ i sin 2t) = e4t

 cos 2t+ i sin 2t
0

2i cos 2t− 2 sin 2t


= e4t

 cos 2t
0

−2 sin 2t

+ ie4t

 sin 2t
0

2 cos 2t

 .

Therefore the general solution can be written as

x = c1

0
1
0

 e6t + c2e
4t

 cos 2t
0

−2 sin 2t

+ c3e
4t

 sin 2t
0

2 cos 2t

 .

4. Consider the system x′ =

(
1
2 0
1 − 1

2

)
x.

(a) Find the general solution of the system.

Solution. We first find the eigenvalues. Our matrix is a lower triangular matrix, therefore the
eigenvalues are the diagonal entries: λ1 = 1

2 , λ2 = − 1
2 . You can also calculate these the usual

way: ∣∣∣∣ 12 − λ 0
1 − 1

2 − λ

∣∣∣∣ =

(
1

2
− λ
)(
−1

2
− λ
)

= 0 ⇒ λ1 =
1

2
, λ2 = −1

2
.

Now use the equation (A− λI)v = 0 to find the eigenvectors. When λ1 = 1
2 :(

1
2 −

1
2 0 0

1 − 1
2 −

1
2 0

)
⇒

(
0 0 0
1 −1 0

)

The second row tells us that x1 = x2, x2 is free. Therefore the first eigenvector is v1 =

(
1
1

)
.

When λ2 = − 1
2 : (

1
2 + 1

2 0 0
1 − 1

2 + 1
2 0

)
⇒

(
1 0 0
1 0 0

)
The first row tells us that x1 = 0, x2 is free. Therefore the second eigenvector is v2 =

(
0
1

)
.

Since λ1, λ2 are real and distinct, then the general solution is

x = c1

(
1
1

)
et/2 + c2

(
0
1

)
e−t/2.

(b) Sketch a phase plane portrait and classify the system’s geometric character and stability behavior.

Proof. Since the eigenvalues are real, distinct, and opposite sign, we have an unstable saddle.

To sketch, plot both of the eigenvalues v1 and v2. Since λ1 > 0, draw arrows pointing outward
from the origin along v1. This is the vector that will dominate (all the solutions will want to
follow this vector). Since λ2 < 0, draw arrows pointing towards the origin along v2. Then fill in
with arrows (see sketch below).
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(c) Solve the given initial value problem: x′ =

(
1
2 0
1 − 1

2

)
x, x(0) =

(
3
5

)
.

Solution. When t = 0, x =

(
3
5

)
:

(
3
5

)
= c1

(
1
1

)
+ c2

(
0
1

)
which yields the system

3 = c1

5 = c1 + c2

The solution to this system is c1 = 3, c2 = 2. Therefore the solution is

x = 3

(
1
1

)
et/2 + 2

(
0
1

)
e−t/2.

5. Consider the system x′ =

(
2 4
−1 6

)
x.

(a) Find the general solution of the system.

Solution. We first find the eigenvalues:∣∣∣∣2− λ 4
−1 6− λ

∣∣∣∣ = (2−λ)(6−λ)+4 = 12−8λ+λ2+4 = λ2−8λ+16 = (λ−4)2 = 0 ⇒ λ = 4 mult. 2
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Now use the equation (A− λI)v = 0 to find the eigenvectors. When λ = 4:(
2− 4 4 0
−1 6− 4 0

)
⇒

(
−2 4 0
−1 2 0

)
The second equation tells us that x1 = 2x2, x2 is free. Therefore we only get one eigenvector, and

it is v1 =

(
2
1

)
. Since we only have one eigenvector, we will have to “bump up” our solution (i.e.

there will be a te4t term in our solution). We need to find a second eigenvector, so we now solve
the equation (A− λI)v2 = v1: (

−2 4 2
−1 2 1

)
The second equation tells us that x1 = 2x2 − 1, x2 is free. If we let x2 = 0 then the second

eigenvector is v2 =

(
−1
0

)
.

Since λ = 4 is a real repeated root and we only found one eigenvector in the beginning, then the
general solution is

x = c1

(
2
1

)
e4t + c2

((
2
1

)
te4t +

(
−1
0

)
e4t
)
.

(b) Sketch a phase plane portrait and classify the system’s geometric character and stability behavior.

Proof. Since the eigenvalue is real, repeated, and positive, we have an unstable degenerate node.

To sketch, plot v1. Since λ > 0, draw arrows pointing outward from the origin along v1. To
figure out what direction our degenerate node is going, we will find the tangent line along a point.

Consider the the point x =

(
1
0

)
. Plugging this into the equation yields

x′ =

(
2 4
−1 6

)(
1
0

)
=

(
2
−1

)
This vector points down towards the fourth quadrant, so this is where the trajectory must be
moving as well. Then fill in with arrows (see sketch below).

(c) Solve the given initial value problem: x′ =

(
2 4
−1 6

)
x, x(0) =

(
−1
6

)
.

Solution. When t = 0, x =

(
−1
6

)
:(
−1
6

)
= c1

(
2
1

)
+ c2

(
−1
0

)
which yields the system

−1 = 2c1 − c2
6 = c1

The solution to this system is c1 = 6, c2 = 13. Therefore the solution is

x = 6

(
2
1

)
e4t + 13

((
2
1

)
te4t

(
−1
0

)
e4t
)

= 6

(
2
1

)
e4t + 13

(
−1
0

)
e4t + 13

(
2
1

)
te4t

=

(
−1
6

)
e4t +

(
26
13

)
te4t.
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6. Consider the system x′ =

(
6 −1
5 4

)
x.

(a) Find the general solution of the system.

Solution. We first find the eigenvalues:∣∣∣∣6− λ −1
5 4− λ

∣∣∣∣ = (6− λ)(4− λ) + 5 = 24− 10λ+ λ2 + 5 = λ2 − 10λ+ 29 = 0

Use the quadratic formula to solve for λ:

λ =
10±

√
100− 4(1)(29)

2
=

10±
√
−16

2
=

10± 4i

2
= 5± 2i

Therefore λ1 = 5 + 2i, λ2 = 5− 2i.

Now use the equation (A− λI)v = 0 to find the eigenvectors. When λ = 5 + 2i:(
6− (5 + 2i) −1 0

5 4− (5 + 2i) 0

)
⇒

(
1− 2i −1 0

5 −1− 2i 0

)
The first row says that (1 − 2i)x1 = x2. If we choose x1 = 1, then the first eigenvector is

v1 =

(
1

1− 2i

)
. The second eigenvector will then be v2 =

(
1

1 + 2i

)
. The general solution is

therefore

x = c1

(
1

1− 2i

)
e(5+2i)t + c2

(
1

1 + 2i

)
e(5−2i)t,

however, we wish to write our answer as a real solution. Here we will expand both v1e
λ1t and
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v2e
λ2t and see why it is enough to only expand v1e

λ1t to get our solution.(
1

1− 2i

)
e(5+2i)t =

(
1

1− 2i

)
e5tei2t =

(
1

1− 2i

)
e5t(cos 2t+ i sin 2t)

= e5t
(

cos 2t+ i sin 2t
cos 2t+ i sin 2t− 2i cos 2t+ 2 sin 2t

)
= e5t

(
cos 2t

cos 2t+ 2 sin 2t

)
+ ie5t

(
sin 2t

sin 2t− 2 cos 2t

)
(

1
1 + 2i

)
e(5−2i)t =

(
1

1 + 2i

)
e5te−i2t =

(
1

1 + 2i

)
e5t(cos (−2t) + i sin (−2t)) =

(
1

1 + 2i

)
e5t(cos 2t− i sin 2t)

= e5t
(

cos 2t− i sin 2t
cos 2t− sin 2t+ 2i cos 2t+ 2 sin 2t

)
= e5t

(
cos 2t

cos 2t+ 2 sin 2t

)
− ie5t

(
sin 2t

sin 2t− 2 cos 2t

)
Notice that the expansions of v1e

λ1t and v2e
λ2t only differ by a sign! If you know the real and

imaginary part of one of the expansions, you already know the other. This is why we have only
done the expansion of v1e

λ1t in section. We plug these expansions into our general solution:

x = c1

(
e5t
(

cos 2t
cos 2t+ 2 sin 2t

)
+ ie5t

(
sin 2t

sin 2t− 2 cos 2t

))
+ c2

(
e5t
(

cos 2t
cos 2t+ 2 sin 2t

)
− ie5t

(
sin 2t

sin 2t− 2 cos 2t

))
= (c1 + c2)e5t

(
cos 2t

cos 2t+ 2 sin 2t

)
+ i(c1 − c2)e5t

(
sin 2t

sin 2t− 2 cos 2t

)
Relabel the constants to get the general solution

x = c1e
5t

(
cos 2t

cos 2t+ 2 sin 2t

)
+ c2e

5t

(
sin 2t

sin 2t− 2 cos 2t

)
,

which is just the real and imaginary parts of v1e
λ1t.

(b) Sketch a phase plane portrait and classify the system’s geometric character and stability behavior.

Solution. Since the eigenvalues are complex with real part greater than zero, we have an unstable
spiral.

To sketch, we need to determine if our spiral is clockwise or counterclockwise and we will do this

looking at the tangent to a point. Consider the point x =

(
1
0

)
. Plugging this into our equation

yields

x =

(
6 −1
5 4

)(
1
0

)
=

(
6
5

)
This means that the tangent is pointing upwards at the point (1, 0). The only way for this to
occur is if our spiral is moving in the counterclockwise direction. Since the real part is greater
than zero, the spiral will “flow outward” from the origin. See sketch below.
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(c) Solve the given initial value problem: x′ =

(
6 −1
5 4

)
x, x(0) =

(
−2
8

)
.

Solution. When t = 0, x =

(
−2
8

)
:

(
−2
8

)
= c1

(
1
1

)
+ c2

(
0
−2

)
which yields the system

−2 = c1

8 = c1 − 2c2

This system has the solution c1 = −2, c2 = −5, therefore the solution is

x = −2e5t
(

cos 2t
cos 2t+ 2 sin 2t

)
− 5e5t

(
sin 2t

sin 2t− 2 cos 2t

)
= e5t

(
−2 cos 2t− 5 sin 2t

−2 cos 2t− 4 sin 2t− 5 sin 2t+ 10 cos 2t

)
= e5t

(
−2 cos 2t− 5 sin 2t
8 cos 2t− 9 sin 2t

)

7. Use the method of undetermined coefficients to solve the system x′ =

(
4 1

3
9 6

)
x +

(
−3
10

)
et.

Solution. The equation is in standard form. We will begin by solving for the homogenous solution to
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x′ =

(
4 1

3
9 6

)
x. Find the eigenvalues:

∣∣∣∣4− λ 1
3

9 6− λ

∣∣∣∣ = (4− λ)(6− λ)− 3 = λ2 − 10λ+ 21 = (λ− 3)(λ− 7) = 0

Therefore the eigenvalues are λ1 = 3, λ2 = 7.

Now use the equation (A− λI)v = 0 to find the eigenvectors. When λ1 = 3 we have the system(
1 1

3 0
9 3 0

)
Pick whichever row you want. The first row says that x1 = − 1

3x2. Setting x2 = 1 gives us the
eigenvector

v1 =

(
− 1

3
1

)
.

When λ2 = 7 we have the system (
−3 1

3 0
9 −1 0

)
Pick whichever row you want. The second row says that 9x1 = x2 or that x1 = 1

9x2. Setting x2 = 1
gives us the eigenvector

v2 =

(
1
9
1

)
.

Therefore the homogeneous solution is

xh = c1e
3t

(
− 1

3
1

)
+ c2e

7t

(
1
9
1

)
.

Now we solve for the particular solution. Since g(t) =

(
−3
10

)
et, we will guess

xp = aet =

(
a1
a2

)
et.

Find the first derivative:

x′p =

(
a1
a2

)
et

and plug this into our equation:(
a1
a2

)
et =

(
4 1

3
9 6

)(
a1
a2

)
et +

(
−3
10

)
et

(
a1
a2

)
et =

(
4a1 + 1

3a2
9a1 + 6a2

)
et +

(
−3
10

)
et

Group all the like terms together: (
a1
a2

)
et =

(
4a1 + 1

3a2 − 3
9a1 + 6a2 + 10

)
et

We then have the system of equations{
a1 = 4a1 + 1

3a2 − 3

a2 = 9a1 + 6a2 + 10
⇒

{
3a1 + 1

3a2 = 3

9a1 + 5a2 = −10.
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The solution to this system is a1 = 55
36 , a2 = − 19

4 . Therefore

xp =

(
55
36
− 19

4

)
et

and the general solution is thus

x = xh + xp = c1e
3t

(
− 1

3
1

)
+ c2e

7t

(
1
9
1

)
+

(
55
36
− 19

4

)
et.

8. Consider the autonomous system

x′ = y − x2 + 2

y′ = x2 − xy

(a) Find the fixed points of the system.

Solution. Set x′, y′ = 0 to get the system of equations:{
y − x2 + 2 = 0

x2 − xy = 0

The second row factors into

x(x− y) = 0 ⇒ x = 0 or x = y.

If x = 0, then from the first equation we get that y + 2 = 0 which is y = −2. Therefore (0,−2) is
a fixed point.

If x = y, then from the first equation we have

y − y2 + 2 = 0 ⇒ y2 − y − 2 = 0 ⇒ (y − 2)(y + 1) = 0 ⇒ y = 2 or y = −1

If y = 2, then x = 2 and (2, 2) is a fixed point. If y = −1, then x = −1 and (−1,−1) is a fixed
point.

Therefore the fixed points are (0,−2), (2, 2), (−1,−1).

(b) Write the Jacobian J for the system above.

Solution.

J =

(
∂
∂x (y − x2 + 2) ∂

∂y (y − x2 + 2)
∂
∂x (x2 − xy) ∂

∂y (x2 − xy)

)
=

(
−2x 1

2x− y −x

)

(c) For each of your fixed points in part (a), evaluate the Jacobian J you found in part (b) and use
it to classify the type and stability of that fixed point.

Solution. At (0,−2), J(0,−2) =

(
0 1
2 0

)
. Find the eigenvalues:

∣∣∣∣−λ 1
2 −λ

∣∣∣∣ = λ2 − 2 = 0 ⇒ λ = ±
√

2

Since the eigenvalues are real, distinct, and opposite sign, we have an unstable saddle.
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At (2, 2), J(2, 2) =

(
−4 1
2 −2

)
. Find the eigenvalues:

∣∣∣∣−4− λ 1
2 −2− λ

∣∣∣∣ = (−4− λ)(−2− λ)− 2 = λ2 + 6λ+ 6 = 0

Plugging this into the quadratic formula we have λ = −3 ±
√
10
2 . Since the eigenvalues are real,

distinct, and both negative, we have a stable node.

At (−1,−1), J(−1,−1) =

(
2 1
−1 1

)
. Find the eigenvalues:

∣∣∣∣2− λ 1
−1 1− λ

∣∣∣∣ = (2− λ)(1− λ+ 1) = λ2 − 3λ+ 3 = 0

Plugging this into the quadratic formula we have λ = 3
2 ± i

√
3
2 . Since the eigenvalues are complex

and the real part is greater than zero, we have an unstable spiral.
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