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Detailed Solutions

1. Solvex'=|-2 1 -2]|x.

1-x -2 ) -2 1-2)
52 1:2>\ 1_2)\:(1—)\)‘2 1A’+2‘2 1A‘+2‘2 2’
=1 =M1 =M1 =X\ —4]+2[-2(1 = \) +4] + 2[4 —2(1 = \)]
=(1-A)(A\ =2\ —3) +2(2A +2) +2(2A + 2)
=1 -ANA=3)A+1)+4N+1)+4\+1)
=A+D[(T=NA=-3)+4+1]
=(A+1)[-A*+4X+5]
= A+ DA+ 1A =5)
Therefore the eigenvalues are A = —1 mult. 2, A = 5.

Now we find the eigenvectors. Start with A = —1:

1—(-1) -2 2 0 2 -2 2|0 1 -1 1]0
—2  1-(-1) -2 |o = —2 2 2|0 = 0 0 0]0
2 —2  1-(-1)|0 2 -2 2|0 0 0 0]0

We have two rows of zeros, hence we have two free variables. The first row tells us that x; = x5 — 3.
We can write the general solution of the system as

T To — T3 1 —1
v=|xs | = To =|1)az2+1] 0 | z3
I3 I3 0 1

Choose x5 = 1,23 = 0, and then x5 = 0,23 = 1 to get the eigenvectors

1 -1
V] = 1 , Vo = 0
0 1
Notice that we have 2 eigenvectors which matches the multiplicity of the eigenvalue A = —1. This

means two things: we do not need to go find any more eigenvectors, AND we do not need to have a
te™! as part of our solution because we found two independent eigenvectors (i.e. we do not need to
“bump up” the solution). Now we find the eigenvector for when A = 5:

1-5 =2 2 0 -4 -2 210 1 -1 =210
-2 1-5 =210 = -2 -4 =210 = 0 1 110
2 -2 1-510 2 =2 —41|0 0O 0 010
(We skipped a couple of steps.) The first row tells us that x; = xo + 2x3, and the second row tells us
that xo = —x3. If we choose x3 = 1, then 5 = —1 and x; = 1. Therefore the third eigenvector is
1
V3 = -1
1



Therefore the general solution is

X=c ettt 0 et | -1 et

O = =

2. Solve x' =

S O N

1 6
2 5| x.
0 2

Solution. We begin by finding the eigenvalues. Because our matrix is an upper triangular matrix, the
eigenvalues are the diagonal entries, hence A = 2 mult. 3. We now find the eigenvectors for A = 2:

2—2 1 6 0 01 6|0
0 2-2 5 0 = 00 5|0
0 0 2-210 0 0 0|0

The second row tells us that x3 = 0, and the first row tells us that x5 = —6x3. But this implies that
xo = 0. 21 is our free variable, so we can choose it to be 1, and we get the eigenvector

1
V] = 0
0

We only found one eigenvector, which is less than the multiplicity of our eigenvalue. This means two
things: we must find more eigenvectors, and we must have a t?e%* and te?’ in our solution (i.e. we
must “bump up” our solution). We find the next eigenvector by solving the equation (A — I\)vy = vy:

01 6|1
0 0 5|0
0 0 0|0
The second row tells us x3 = 0, and the first row tells us that x5 = —6x3 + 1, which means that x5 = 1.

x1 is free, so if we choose it to be 0 then the second eigenvector is

0
Vo = 1
0

We need to find another eigenvector, so we solve the equation (A — I\)vg = va:

01 6|0
0 0 5|1
0 0 00
The second row tells us that x3 = %, the first row tells us that 2o = —6x3 = —g. x1 is free, so if we
choose it to be 0 then the third eigenvector is
0
6
va— | -8
3 l5
5
Therefore the solution is
1 1 0 1 42 0 0
x=c1 |0 €2t+62 0)te?t+ (1] e* + c3 0 562t+ 1] te? + —g et
0 0 0 0 0 i



3. Solve x’ =

O =~
S OO

Solution. We begin by finding the eigenvalues:

4-X 0 1
0 6-XA 0 :(4—)\)’
4 0 4-2)

6—A 0

0 4—-) —4 0

‘—0+1‘ 0 6—)\‘
=(A=MN6-=XN(4—X)+4(6-N)
=(6—=N[(4-N4—-)) +4]

6 — \) (A% — 8\ +20)

—~

We use the quadratic formula to find the eigenvalues of A2 — 8\ + 20:
+ /64 —4(1)(2 V= i
)\:8 6 (1)( 0):8j: 16:8i41:4:|:2i
2 2 2
Therefore the eigenvalues are A\ = 6, Ao =4+ 2i, \3 =4 — 2. When \; = 6:

4—-6 0 1 0 -2 0 1|0 -2 0 1|0
0 6—6 0 0 = 0 0 010 = 0 0 010
—4 0 4—-61]0 -4 0 2|0 0 0 —-410

The last row tells us that x3 = 0, the first row tells us that 2x; = x3 which implies that z1 = 0. x5 is
free, so if we choose it to be 1 then we have the eigenvector

0
V] = 1
0
When Ay =4 + 2i:
4 — (44 2i) 0 1 0 —2i 0 1 10
0 6 — (44 2i) 0 0 = 0 2-2¢ 0 |0
—4 0 4—(4+2i) |0 —4 0 —21 |0

The second row tells us that (2 — 2i)ze = 0, or that zo = 0. The first row tells us that 2izq = x3. If
we choose x1 = 1, then we have the eigenvector

1
Vo = 0
2i
This implies that the third eigenvector is
1
V3 = 0
—2i
Therefore the solution to the system is
0 1 ‘ 1 A
X=0c 1 th + o O 6(4+21)t + c3 0 6(4721)15,
0 2i —2i



however we want to write our solution as a real solution. Therefore we must expand voe*?* (you can
also do the same for vze*3t, but it is enough to just do one expansion):

1 1 cos 2t + 2sin 2t
0 | e*e = | 0 | e*(cos2t +isin2t) = e 0
21 21 21 cos 2t — 2sin 2t
cos 2t sin 2t
=t 0 + iett 0
—2sin 2t 2cos 2t

Therefore the general solution can be written as

0 cos 2t sin 2t
x=c1 | 1] e + cpet 0 + et 0
0 —2sin 2t 2cos 2t

1
4. Consider the system x’ = (2 0 ) X.

1
1 =3

(a) Find the general solution of the system.

Solution. We first find the eigenvalues. Our matrix is a lower triangular matrix, therefore the

eigenvalues are the diagonal entries: \; = %, Ao = —%. You can also calculate these the usual

way:

1

1y 0 1 1 1 1

2 === [—==-A)=0 = X=2,A ——.
-G (5 3

Now use the equation (A — AI)v = 0 to find the eigenvectors. When A\; = %:

F—3 0 0 N 0 010
1 -i-10 1 -1]0

. . . 1
The second row tells us that x1 = x2, x5 is free. Therefore the first eigenvector is vi = ( )

1
When)\Q:f%:
0 1 0|0
o) = (1ols)

The first row tells us that x1 = 0, x5 is free. Therefore the second eigenvector is vy = (g)

1 1
(2+2 10 1
L =3+3

Since A1, Ao are real and distinct, then the general solution is
_ I\ 42 0\ —¢)2
X =1 (1) e + co 1 e .

Sketch a phase plane portrait and classify the system’s geometric character and stability behavior.

O

Proof. Since the eigenvalues are real, distinct, and opposite sign, we have an unstable saddle.

To sketch, plot both of the eigenvalues vi and vs. Since A\; > 0, draw arrows pointing outward
from the origin along vi. This is the vector that will dominate (all the solutions will want to
follow this vector). Since Ay < 0, draw arrows pointing towards the origin along vs. Then fill in
with arrows (see sketch below).

O
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(¢) Solve the given initial value problem: x' = (% 0 ) x, x(0) = (2)

Solution. When t =0, x = <3):

which yields the system
3= C1
d=rc1+co

The solution to this system is ¢; = 3,co = 2. Therefore the solution is
a1\ 2 0\ /2
x=3 (1) e’ 42 1 e .

5. Consider the system x' = (_21 g) x

(a) Find the general solution of the system.
Solution. We first find the eigenvalues:

2—-A 4
-1 6-A

‘ = (2=N)(6—=N)+4 = 12-8X\+ *+4 = N2 -8 \+16 = (A-4)> =0 = X =4mult.2



Now use the equation (A — AI)v = 0 to find the eigenvectors. When A = 4:

2—-4 4 0 N -2 410
-1 6-—-410 -1 2|0
The second equation tells us that xy = 2x5, x5 is free. Therefore we only get one eigenvector, and
? . Since we only have one eigenvector, we will have to “bump up” our solution (i.e.
there will be a te?! term in our solution). We need to find a second eigenvector, so we now solve
the equation (A — A\)vy = vy:
-2 4|2
-1 2|1

The second equation tells us that x1 = 2x5 — 1, x5 is free. If we let o = 0 then the second

it is V] =

eigenvector is vy = <Ol>'

Since A = 4 is a real repeated root and we only found one eigenvector in the beginning, then the

general solution is
X=c 2 et +c 2 te*t + -1 et
11 2{\1 0 :

Sketch a phase plane portrait and classify the system’s geometric character and stability behavior.

O

Proof. Since the eigenvalue is real, repeated, and positive, we have an unstable degenerate node.
To sketch, plot vi. Since A > 0, draw arrows pointing outward from the origin along v;. To
figure out what direction our degenerate node is going, we will find the tangent line along a point.

Consider the the point x = <é) Plugging this into the equation yields

(2 )0)- ()

This vector points down towards the fourth quadrant, so this is where the trajectory must be
moving as well. Then fill in with arrows (see sketch below).

O
. s , 2 4 -1
Solve the given initial value problem: x’ = 1 6)% x(0) = 6 |
) -1
Solution. When t =0, x = < 6 ):
I\ _ o () o (L
6 ) \1)72\ o
which yields the system
—1= 261 — C2
6 = C1
The solution to this system is ¢; = 6,co = 13. Therefore the solution is
a2 a 2\ (1Y 4
x—6(1>e +13((1>te 0 e
a2 4t -1\ 2\ 4
—6(1>e +13<0>e + 13 1 te
(1Y) 26\, 4
<6)e +<13)t6 .
O



6. Consider the system x’ = (g 41> X.

(a) Find the general solution of the system.
Solution. We first find the eigenvalues:

‘6—)\ -1

=6-NA-XN+5=24—10A+X2+5=22-100A+29=0
5  4—\

Use the quadratic formula to solve for A:

\ 104 1/100 —4(1)(29)  10++/—16 10+ 4i
h 2 o 2 2

Therefore Ay =5+ 2i, Ao = 5 — 2i.
Now use the equation (A — AI)v = 0 to find the eigenvectors. When A = 5 + 2i:

6 — (5 + 2i) ~1 0 N 1-2i -1 |0
5 4—(542i) |0 5 —1-2i|0

=5+t

The first row says that (1 — 2i)x; = x2. If we choose x; = 1, then the first eigenvector is

1 . . 1 .
vi= | 2i>’ The second eigenvector will then be vy = <1 4 2i> . The general solution is
therefore

1 - 1 4
_ (5+24)t (5—2i)t
X_Cl(lm‘)e +CQ(1+2¢)6 ’

however, we wish to write our answer as a real solution. Here we will expand both v;e*t?

and



)\2 >\1t

voe*?t and see why it is enough to only expand vie*? to get our solution.

(5+24)t 5t 12t 5t -
(1 22) (& = (1 2Z) e e = (1 27/) (& (COS 2t + 7sin 2t>

— Ot cos 2t + 2 sin 2¢
o cos 2t + i sin 2t — 24 cos 2t + 2sin 2t

_ Gt cos 2t 4 et sin 2¢
o cos 2t + 2sin 2t sin 2t — 2 cos 2t

1 (5—2i)t _ 1 5t —i2t _ 1 St( o (_ S _ 1 Bt( o op i
(1—1—2@')6 =\140)¢e =\149)¢ (cos (—2t) +isin (—2t)) = 1492i)€ (cos 2t — isin 2t)

_ 5t cos 2t — isin 2t
o cos 2t — sin 2t + 2i cos 2t + 2sin 2t

— Ot cos 2t _ et sin 2t
- cos 2t + 2sin 2t sin 2t — 2 cos 2t

t Aot

Notice that the expansions of vie*? and voe?t only differ by a sign! If you know the real and
imaginary part of one of the expansions, you already know the other. This is why we have only
done the expansion of vie*? in section. We plug these expansions into our general solution:

. 5t cos 2t . st sin 2¢ 5t cos 2t st sin 2¢
xX=a <e (cos 2t + 2sin 2t> T e (sin 2t — 2cos 2t teafe cos 2t + 2sin 2t e sin 2t — 2 cos 2t

B 5t cos 2t o 5t sin 2¢
= (c1 +co)e <Cos 2t + 2sin 2t> tile —ep)e <sin 2t — 2cos 2t

Relabel the constants to get the general solution

T cos 2t 5t sin 2¢
x=ae (cos 2t + 2sin 2t) + e (sin 2t —2cos2t)’

which is just the real and imaginary parts of vie*?. O
Sketch a phase plane portrait and classify the system’s geometric character and stability behavior.

Solution. Since the eigenvalues are complex with real part greater than zero, we have an unstable
spiral.
To sketch, we need to determine if our spiral is clockwise or counterclockwise and we will do this

looking at the tangent to a point. Consider the point x = (0) Plugging this into our equation

£ 0)-0

This means that the tangent is pointing upwards at the point (1,0). The only way for this to
occur is if our spiral is moving in the counterclockwise direction. Since the real part is greater
than zero, the spiral will “flow outward” from the origin. See sketch below. O

yields
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(c) Solve the given initial value problem: x’ = (6 1) x, x(0) = (2>

Solution. When t =0,z = <82>:

which yields the system

—2201

8:(317202

This system has the solution ¢; = —2, ¢y = —5, therefore the solution is
_ o5t cos 2t e 5t sin 2¢
X =2 <cos 2t + 2sin 2t> o¢ (sin 2t — 2 cos 2t
_ ot —2cos2t — 5Hsin 2t
- —2cos2t — 4sin2t — 5sin 2t + 10 cos 2t

|
&
R

—2cos 2t — 5sin 2t
8 cos 2t — 9sin 2t

1 _
7. Use the method of undetermined coefficients to solve the system x’' = (3 %) X+ ( 3) et.
Solution. The equation is in standard form. We will begin by solving for the homogenous solution to

10



1
x' = (4 g) x. Find the eigenvalues:

| colm

)\’—(4)\)(6)\)3—>\210>\+21—(>\3)(>\7)—0

Therefore the eigenvalues are \; = 3, Ay = 7.

Now use the equation (A — AI)v = 0 to find the eigenvectors. When A\; = 3 we have the system

1
1 310
9 310
Pick whichever row you want. The first row says that z; = —izy. Setting xo = 1 gives us the

eigenvector
1
("3
Vi < 1 )

-3 110
9 —1]0

Pick whichever row you want. The second row says that 9z; = x5 or that x; = $$2. Setting x5 = 1
gives us the eigenvector )
Vo (?) |
Therefore the homogeneous solution is
_1 1
x5, = cret ( 13> + coe™ <%> .

Now we solve for the particular solution. Since g(t) = (

When Ay = 7 we have the system

-3\ .
10) e', we will guess

a
Xp = ae’ = L) el
az

Find the first derivative:

and plug this into our equation:

ar\ ¢ _ (4a1+ %az t =3\
<a2) “= <9a1 +6ay )¢ T 10)°
Group all the like terms together:
ai o 4a1 + %CLQ -3 ot
as ~ \9aq + 6ag + 10

We then have the system of equations

(9]

ai :4a1+%a2—3 N 3a1—|—%a2 =3
as = 9aq1 + 6as + 10 9a1 + 5a2 = —10.

11



55

The solution to this system is a; = 35, a2 = —17‘9. Therefore

and the general solution is thus

_1 1 55
o= () e (1) ()
4

8. Consider the autonomous system
¥ =y—a2?+2
y =2 —ay
(a) Find the fixed points of the system.
Solution. Set x’,y' = 0 to get the system of equations:
y—a22+2 =0
2 —zy =0
The second row factors into

z(r—y)=0 = z=0orz=y.

If x = 0, then from the first equation we get that y + 2 = 0 which is y = —2. Therefore (0, —2) is
a fixed point.

If x = y, then from the first equation we have
y—1°4+2=0 = ¢P-y-2=0 = [H-2y+1)=0 = y=2ory=-1

If y =2, then z = 2 and (2,2) is a fixed point. If y = —1, then x = —1 and (—1,—1) is a fixed
point.
Therefore the fixed points are (0,—2),(2,2), (-1, —1).

O
(b) Write the Jacobian J for the system above.
Solution.
S (Fy- ) Fu-at+2)) ( o 1 )
%(xQ — xy) 0%(9:2 — xy) 2t —y —x
O

(¢) For each of your fixed points in part (a), evaluate the Jacobian J you found in part (b) and use
it to classify the type and stability of that fixed point.

Solution. At (0,-2), J(0,-2) = (g é) Find the eigenvalues:
=X 1| 9 _ _
‘2 _)\‘_/\ —2=0 = A=£V2

Since the eigenvalues are real, distinct, and opposite sign, we have an unstable saddle.

12



At (2,2), J(2,2) = ;4 _12> . Find the eigenvalues:

—4 - A 1 _ Y _

' 9 2)\’—(—4—)\)(—2—)\)—2—)\ +6A+6=0
Plugging this into the quadratic formula we have A = —3 £+ @. Since the eigenvalues are real,
distinct, and both negative, we have a stable node.

At (-1,-1), J(-1,-1) = (21 1) . Find the eigenvalues:

2— A 1| N2 .

‘_1 1_/\‘—(2—)\)(1—)\—#1)—)\ —3X+3=0
Plugging this into the quadratic formula we have A\ = % + z§ Since the eigenvalues are complex
and the real part is greater than zero, we have an unstable spiral. O

13



