

Quiz 2 Solutions

Written by Victoria Kala
July 7, 2017

1. Show that the following differential equation is exact, and then solve the equation.

$$3e^{3x}y + (e^{3x} + 2y)y' = 0.$$

Solution. We are given $M = 3e^{3x}y$ and $N = e^{3x} + 2y$. Show that the equation is exact:

$$\begin{aligned} M_y &= 3e^{3x} \\ N_x &= 3e^{3x} \end{aligned}$$

Since $M_y = N_x$, the equation is exact.

Integrate M with respect to x :

$$f(x, y) = \int M dx + g(y) = \int (3e^{3x}y) dx + g(y) = e^{3x}y + g(y)$$

Take the derivative of f with respect to y and set it equal to N :

$$\frac{\partial}{\partial y}(e^{3x}y + g(y)) = e^{3x} + 2y$$

$$e^{3x} + g'(y) = e^{3x} + 2y$$

Therefore $g'(y) = 2y$ and

$$g(y) = \int 2y dy = y^2.$$

Plug back into our formula for f :

$$f(x, y) = e^{3x}y + y^2$$

and set $f = C$:

$$e^{3x}y + y^2 = C.$$

□