

---

# Practice Midterm

---

Math 4B: Ordinary Differential Equations

Winter 2016

University of California, Santa Barbara

TA: Victoria Kala

Version 1.0  
January 31, 2016

**Practice Midterm**  
**10 Questions**

Name: \_\_\_\_\_

Score : NA

**Directions:** Write your name in the space provided. There are no outside resources allowed – this includes books, notes, phones, and calculators. As determined by the instructor, an answer with no work shown may receive no credit. Unless otherwise specified, numbers included in a solution are not to be approximated, but instead expressed as exact numbers (i.e., in terms of square roots, multiples of  $\pi$ , etc.). All trigonometric expressions are to be evaluated.

*Disclaimer: The content and level of difficulty of these practice questions are not guaranteed to be in correlation with the midterm nor final examination in any form.*

1. Give an example of a third (3rd) order
  - (a) nonlinear differential equation
  - (b) linear differential equation
2. Verify  $P = \frac{ce^t}{1+ce^t}$  is a solution to the differential equation  $\frac{dP}{dt} = P(1 - P)$ .

---

GO ON TO THE NEXT PAGE.

3. (a) Solve the following first order linear equation:

$$xy' + (1+x)y = e^{-x} \sin 2x$$

- (b) For the differential equation in part (a), determine the largest interval on which the existence and uniqueness theorem for first order linear differential equations guarantees the existence of a unique solution at the initial value  $y(4) = 1$ .

---

GO ON TO THE NEXT PAGE.

4. Solve the following initial value problem:

$$\frac{dy}{dx} = x\sqrt{1 - y^2}, \quad y(0) = \frac{\pi}{6}$$

5. Solve the following separable equation:

$$\frac{dy}{dx} = \frac{xy + 2y - x - 2}{xy - 3y + x - 3}$$

---

GO ON TO THE NEXT PAGE.

6. Solve the initial value problem

$$(y^2 \cos x - 3x^2 y - 2x)dx + (2y \sin x - x^3 + \ln(y))dy = 0, \quad y(0) = e$$

---

GO ON TO THE NEXT PAGE.

7. Solve the initial value problem

$$(1 + x^2) \frac{dy}{dx} + 2xy = f(x), \quad y(0) = 0$$

where  $f(x) = \begin{cases} x, & 0 \leq x < 1 \\ -x, & x \geq 1 \end{cases}$ .

*Hint:* an integrating factor has already been multiplied through.

---

GO ON TO THE NEXT PAGE.

8. Find the general solution of the following homogeneous higher-order differential equations:

(a)  $y'' + 4y' + 7y = 0$  (use  $x$  as the independent variable)

(b)  $y^{(3)} + 2y'' + y' = 0$  (use  $x$  as the independent variable)

(c)  $2\frac{d^2u}{dt^2} - 5\frac{du}{dt} - 3u = 0$

(d)  $\frac{d^4r}{ds^4} - r = 0$

---

GO ON TO THE NEXT PAGE.

9. (a) Calculate  $W(y_1, y_2, y_3)$  where  $y_1 = e^x, y_2 = e^{2x}, y_3 = e^{3x}$ .  
(b) Suppose  $y_1, y_2$  are solutions to the equation  $x^2y'' + (2x - x^2)y' + y = 0$ . Find  $W(y_1, y_2)$ .

---

GO ON TO THE NEXT PAGE.

10. (a) The function  $y_1 = x^2$  is a solution of  $x^2y'' - 3xy' + 4y = 0$ . Use the method of reduction of order to find a second solution  $y_2$  to the differential equation on the interval  $(0, \infty)$ .
- (b) Show that  $y_1$  and  $y_2$  form a fundamental set of solutions to the differential equation.
- (c) Write the general solution of the differential equation using  $y_1$  and  $y_2$ .

---

END OF EXAMINATION.