
Practice Final

Math 4B: Ordinary Differential Equations
Winter 2016

University of California, Santa Barbara

TA: Victoria Kala

March 7, 2016

Practice Final
Written by Victoria Kala
vtkala@math.ucsb.edu
Last updated 3/7/2016

Name: _____ Score : NA

Directions: Write your name in the space provided. There are no outside resources allowed – this includes books, notes, phones, and calculators. As determined by the instructor, an answer with no work shown may receive no credit. Unless otherwise specified, numbers included in a solution are not to be approximated, but instead expressed as exact numbers (i.e., in terms of square roots, multiples of π , etc.). All trigonometric expressions are to be evaluated.

Disclaimer: The content and level of difficulty of these practice questions are not guaranteed to be in correlation with the midterm nor final examination in any form.

1. Solve the given initial-value problem:

$$\frac{dy}{dx} = \frac{y^2 - 1}{x^2 - 1}, \quad y(2) = 2$$

2. Solve the following differential equation:

$$(x + 1) \frac{dy}{dx} = -(x + 2)y + 2xe^{-x}$$

3. Consider the differential equation $(6xy^3 + \cos y)\frac{dy}{dx} + (2kx^2y^2 - x \sin y)dy = 0$.

- Find the value of k so that the given differential equation is exact.
- Solve the equation using your value of k from part (a).

4. Show that the equation

$$(x^2y + 4y)dy + xdx = 0$$

is not exact, then find the appropriate integrating factor to make the equation exact. Solve the initial value problem given $y(4) = 0$.

Hint: Put your equation in the correct form before you begin.

5. Show that $y_1 = x^2$ and $y_2 = x^2 \ln x$ are linearly independent solutions of the homogeneous equation $x^3 y''' - 2xy' + 4y = 0$ on the interval $(0, \infty)$.

6. Use reduction of order to find a second solution y_2 to the differential equation

$$4t^2y'' + y = 0$$

given that $y_1 = t^{1/2} \ln t$ is a solution.

7. Solve the following initial-value problems:

- (a) $y'' - 2y' + y' = 0, y(0) = 5, y'(0) = 10$
- (b) $y''' + 12y'' + 36y' = 0, y(0) = 0, y'(0) = 1, y''(0) = -7$
- (c) $y'' + 16y = 0, y(0) = 2, y'(0) = -2$

8. Suppose you are solving the equation $y'' + P(t)y' + Q(t)y = g(t)$, where $P(t)$ and $Q(t)$ are constants, using the method of undetermined coefficients. Complete the table below. Assume $g(t)$ has no function in common with the homogeneous solution y_h .

$g(t)$	Form of y_p
$3t^2 - 2$	(a)
(b)	Ae^{5t}
$6t^2 + 2 - 12e^{-2t}$	(c)
$e^{3x} \sin 4x$	(d)
(e)	$(At + B)e^{-3t}$
$1 - t^2 e^{-t}$	(f)
$3 \cos 2t$	(g)
(h)	$At + B$
$4t(1 + 3 \sin t)$	(i)

List your solutions for (a) - (i) below:

9. Solve the given differential equation using the method of undetermined coefficients.

$$y'' + 2y' = 3 + 4 \sin 2t.$$

10. Solve the given initial-value problem.

$$y'' + 4y' + 4y = (3 + t)e^{-2t}, \quad y(0) = 2, y'(0) = 5$$

11. Find the general solution of the given differential equation using variation of parameters.

$$y'' + y = \tan t$$

12. $y_1 = \cos(\ln t)$, $y_2 = \sin(\ln t)$ are independent solutions of the equation

$$t^2 y'' + t y' + y = \sec(\ln t).$$

Find the general solution of the equation.

13. Solve the given initial-value problem:

$$\mathbf{x}' = \begin{pmatrix} \frac{1}{2} & 0 \\ 1 & -\frac{1}{2} \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

14. Solve the given initial-value problem:

$$\mathbf{x}' = \begin{pmatrix} 2 & 4 \\ -1 & 6 \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} -1 \\ 6 \end{pmatrix}$$

15. Solve the given initial-value problem:

$$\mathbf{x}' = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} -2 \\ 8 \end{pmatrix}$$

16. Solve $\mathbf{x}' = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \mathbf{x}$.

17. Solve $\mathbf{x}' = \begin{pmatrix} 2 & 1 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{x}$.

$$18. \text{ Solve } \mathbf{x}' = \begin{pmatrix} 4 & 0 & 1 \\ 0 & 6 & 0 \\ -4 & 0 & 4 \end{pmatrix} \mathbf{x}.$$