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Answers

This page contains answers only. Detailed solutions are on the following pages.

1. ln |y − 1| − ln |y + 1| = ln |x− 1| − ln |x+ 1| or
y = x

2. y =
x2 + C

(x+ 1)ex

3. (a) k = 9
2

(b) 3x2y3 + x cos y = C

4. 1
2 ln(x2 + 4) + 1

2y
2 = C or 1

2x
2ey

2

+ 2ey
2

= C

5. See detailed solution

6. y2 = −t1/2

7. (a) y = 5et + 5tet

(b) y = 5
36 −

5
36e
−6t + 1

6 te
−6t

(c) y = 2 cos 4t− 1
2 sin 4t

8. (a) yp = At2 +Bt+ C

(b) Answers will vary

(c) yp = At2 +Bt+ C + Ee−2t

(d) yp = Ae3t sin 4t+Be3t cos 4t

(e) Answers will vary

(f) yp = A+ (Bt2 + Ct+ E)e−t

(g) yp = A cos 2t+B sin 2t

(h) Answers will vary

(i) yp = At+B+(Ct+E) sin t+(Ft+G) cos t

9. y = c1 + c2e
−2t + 3

2 t−
1
2 sin 2t− 1

2 cos 2t

10. y = 2e−2t + 9te−2t +
(
1
6 t

3 + 3
2 t

2
)
e−2t

11. y = c1 cos t+ c2 sin t− cos t ln | sec t+ tan t|

12. y = c1 cos(ln t)+c2 sin(ln t)+ln | cos(ln t)|(cos(ln t))+
ln |t|(sin(ln t))

13. x = 3

(
1
1

)
et/2 + 2

(
0
1

)
e−t/2

14. x =

(
−1
6

)
e4t +

(
26
13

)
te4t

15. x = e5t
(
−2 cos 2t− 5 sin 2t
8 cos 2t− 9 sin 2t

)

16. x = c1

1
1
0

 e−t + c2

−1
0
1

 e−t + c3

 1
−1
1

 e5t

17. x = c1

1
0
0

 e2t + c2

1
0
0

 te2t +

0
1
0

 e2t

 +

c3

1
0
0

 t2

2 e
2t +

0
1
0

 te2t +

 0
− 6

5
1
5

 e2t



18. x = c1

0
1
0

 e6t + c2e
4t

 cos 2t
0

−2 sin 2t

 +

c3e
4t

 sin 2t
0

2 cos 2t



2



Detailed Solutions

1. Solve the given initial-value problem:

dy

dx
=
y2 − 1

x2 − 1
, y(2) = 2

Solution. This is a separable equation. Rewrite with y’s on one side and x’s on the other:

dy

y2 − 1
=

dx

x2 − 1
.

We must use partial fraction decomposition to integrate both sides. Start by factoring the denomina-
tors:

dy

(y − 1)(y + 1)
=

dx

(x− 1)(x+ 1)

The partial fraction decomposition of the left hand side is

1

(y − 1)(y + 1)
=

A

y − 1
+

B

y + 1
.

To find A,B, clear the denominators by multiplying both sides by (y − 1)(y + 1) and combining like
terms:

1 = A(y + 1) +B(y − 1)

1 = Ay +A+By −B
1 = (A+B)y +A−B

Set like terms equal to each other to get the following system:{
A+B = 0

A−B = 1

which has the solution A = 1
2 , B = − 1

2 . Therefore the partial fraction decomposition of the left hand
side is

1

(y − 1)(y + 1)
=

1
2

y − 1
−

1
2

y + 1
.

The right hand side also has the same partial fraction decomposition:

1

(x− 1)(x+ 1)
=

1
2

x− 1
−

1
2

x+ 1
.

We now integrate both sides:∫ ( 1
2

y − 1
−

1
2

y + 1

)
dy =

∫ ( 1
2

x− 1
−

1
2

x+ 1

)
dx

1

2
ln |y − 1| − 1

2
ln |y + 1| = 1

2
ln |x− 1| − 1

2
ln |x+ 1|+ C

ln |y − 1| − ln |y + 1| = ln |x− 1| − ln |x+ 1|+ C

We will now plug in the initial value. When x = 2, y = 2:

ln |2− 1| − ln |2 + 1| = ln |2− 1| − ln |2 + 1|+ C ⇒ C = 0.

Therefore the implicit solution is

ln |y − 1| − ln |y + 1| = ln |x− 1| − ln |x+ 1|.
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Since the problem didn’t give instructions of whether to solve for the solution implicitly or explicitly,
you can leave it in implicit form. If you wish to solve for it explicitly, combine the log terms:

ln

∣∣∣∣y − 1

y + 1

∣∣∣∣ = ln

∣∣∣∣x− 1

x+ 1

∣∣∣∣
Take the exponential of both sides and then solve for y

y − 1

y + 1
=
x− 1

x+ 1
⇒ y − 1 =

x− 1

x+ 1
(y + 1) ⇒ y − x− 1

x+ 1
y =

x− 1

x+ 1
+ 1

⇒ y

(
1− x− 1

x+ 1

)
=
x− 1

x+ 1
+ 1 ⇒ y =

x−1
x+1 + 1

1− x−1
x+1

⇒ y =
x− 1 + x+ 1

x+ 1− (x− 1)

y = x

2. Solve the following differential equation:

(x+ 1)
dy

dx
= −(x+ 2)y + 2xe−x

Solution. This is a first order linear equation. Rewrite in standard form:

(x+ 1)
dy

dx
+ (x+ 2)y = 2xe−x ⇒ dy

dx
+
x+ 2

x+ 1
y =

2xe−x

x+ 1

We have that

P (x) =
x+ 2

x+ 1
= 1 +

1

x+ 1

(use long division or write x+ 2 = x+ 1 + 1), therefore our integrating factor is

µ = exp

(∫
P (x)dx

)
= exp

(∫ (
1 +

1

x+ 1

)
dx

)
= exp(x+ ln |x+ 1|) = exeln |x+1| = (x+ 1)ex.

Multiply µ by the standard form equation:

(x+ 1)ex
(
dy

dx
+
x+ 2

x+ 1
y

)
= (x+ 1)ex

(
2xe−x

x+ 1

)

(x+ 1)ex
dy

dx
+ (x+ 2)exy = 2x ⇒ (x+ 1)ex

dy

dx
+ [(x+ 1)ex]′y = 2x

([(x+ 1)ex]y)
′

= 2x

Integrate both sides:

(x+ 1)exy =

∫
2xdx ⇒ (x+ 1)exy = x2 + C

Solve for y:

y =
x2 + C

(x+ 1)ex

3. Consider the differential equation (6xy3 + cos y)dx+ (2kx2y2 − x sin y)dy = 0.

(a) Find the value of k so that the given differential equation is exact.

(b) Solve the equation using your value of k from part (a).
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Solution. (a) We need to find the value of k such that My = Nx.

M = 6xy3 + cos y N = 2kx2y2 − x sin y

My = 18xy2 − sin y Nx = 4kxy2 − sin y

We need 4k = 18, or k = 9
2 .

(b) Substitute k = 9
2 into the equation above:

(6xy3 + cos y)dx+ (9x2y2 − x sin y)dy = 0.

Let’s check that our equation is indeed exact.

M = 6xy3 + cos y N = 9x2y2 − x sin y

My = 18xy2 − sin y Nx = 18xy2 − sin y

My = Nx so our equation is exact. Recall that we need to find an f such that ∂f
∂x = M and

∂f
∂y = N . First we integrate M with respect to x:

f(x, y) =

∫
Mdx+ g(y) =

∫
(6xy3 + cos y)dx+ g(y)

= 3x2y3 + x cos y + g(y)

Then we take the derivative of f with respect to y and set it equal to N :

∂

∂y
(3x2y3 + x cos y + g(y)) = 9x2y2 − x sin y

9x2y2 − x sin y + g′(y) = 9x2y2 − x sin y ⇒ g′(y) = 0

Therefore g(y) = const.. Plug this into f above and set f(x, y) = C:

3x2y3 + x cos y = C.

4. Show that the equation
(x2y + 4y)dy + xdx = 0

is not exact, then find the appropriate integrating factor to make the equation exact. Solve the initial
value problem given y(4) = 0.

Hint : Put your equation in the correct form before you begin.

Solution. Rewrite the equation in the form Mdx+Ndy = 0:

xdx+ (x2y + 4y)dy = 0.

We need to show that the equation is not exact, so we need to show that My 6= Nx.

M = x N = x2y + 4y

My = 0 Nx = 2xy

Clearly My 6= Nx.

Now we will try and find an integrating factor:
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• Check if
My−Nx

N is a function of x alone:

My −Nx
N

=
−2xy

x2y + 4y
=

−2xy

(x2 + 4)y
= − 2x

x2 + 4

is a function of x alone, so this is a possibility.

• Check if
Nx−My

M is a function of y alone:

Nx −My

M
=

2xy

x
= 2y

is a function of y alone, so this is also a possibility.

• Check if
Nx−My

xM−yN is a function of xy:

Nx −My

xM − yN
=

2xy

x2 − x2y2 − 4y2

is not a function of xy alone, so we will not use this method.

So we see that we could use either the first two to find an integrating factor. We will show both.

If we use the first equation:

µ = exp

(∫
− 2x

x2 + 4
dx

)
= exp

(
− ln(x2 + 4)

)
=

1

x2 + 4

Multiply µ by the equation:
x

x2 + 4
dx+ ydy = 0

Let’s check to see if this equation is exact:

M =
x

x2 + 4
N = y

My = 0 Nx = 0

Clearly My = Nx, so the equation is indeed exact. We need to find an f such that ∂f
∂x = M and

∂f
∂y = N . First we integrate M with respect to x (use the substitution u = x2 + 4, du = 2xdx):

f(x, y) =

∫
x

x2 + 4
dx+ g(y) =

1

2
ln(x2 + 4) + g(y)

Then we take the derivative of f with respect to y and set it equal to N :

∂

∂y

(
1

2
ln(x2 + 4) + g(y)

)
= y

g′(y) = y

Integrate g′(y):

g(y) =
1

2
y2

Plug this into f above and set f(x, y) = C:

1

2
ln(x2 + 4) +

1

2
y2 = C.

If we use the second equation:

µ = exp

(∫
Nx −My

M
dy

)
= exp

(∫
2ydy

)
= ey

2
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Multiply µ by the equation:

xey
2

dx+ (x2yey
2

+ 4yey
2

)dy = 0

Let’s check to see if this equation is exact:

M = xey
2

N = x2yey
2

+ 4yey
2

My = 2xyey
2

Nx = 2xyey
2

Clearly My = Nx, so the equation is indeed exact. We need to find an f such that ∂f
∂x = M and

∂f
∂y = N . First we integrate M with respect to x:

f(x, y) =

∫
Mdx+ g(y) =

∫
xey

2

dx+ g(y)

=
1

2
x2ey

2

+ g(y)

Then we take the derivative of f with respect to y and set it equal to N :

∂

∂y

(
1

2
x2ey

2

+ g(y)

)
= x2yey

2

+ 4yey
2

x2yey
2

+ g′(y) = x2yey
2

+ 4yey
2

g′(y) = 4yey
2

.

Integrate g′(y) using the substitution u = y2, du = 2ydy:

g(y) =

∫
4yey

2

dy =

∫
2eudu = 2eu = 2ey

2

Plug this into f above and set f(x, y) = C:

1

2
x2ey

2

+ 2ey
2

= C.

You can verify yourself that these two solutions are equivalent.

5. Show that y1 = x2 and y2 = x2 lnx are linearly independent solutions of the homogeneous equation
x3y′′′ − 2xy′ + 4y = 0 on the interval (0,∞).

Solution. We need to show two things:

• y1 and y2 are solutions to the given equation

• y1 and y2 are linearly independent

Let’s first verify that y1 = x2 is a solution to the given differential equation. Find y′1, y
′′
1 , y
′′′
1 :

y1 = x2

y′1 = 2x

y′′1 = 2

y′′′1 = 0

Then
x3y′′′ − 2xy′ + 4y = x2(0)− 2x(2x) + 4(x2) = 0,

as desired.
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Now let’s verify that y2 = x2 lnx is a solution to the given differential equation. Find y′2, y
′′
2 , y
′′′
2 :

y2 = x2 lnx

y′2 = 2x lnx+ x

y′′2 = 2 lnx+ 2 + 1 = 2 lnx+ 3

y′′′2 =
2

x

Then

x3y′′′ − 2xy′ + 4y = x3
(

2

x

)
− 2x(2x lnx+ x) + 4x2 lnx

= 2x2 − 4x2 lnx− 2x2 + 4x2 lnx

= 0,

as desired.

Now let’s show that the solutions are linearly independent. We need to show that W (y1, y2) 6= 0:

W (y1, y2) =

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ =

∣∣∣∣x2 x2 lnx
2x 2x lnx+ x

∣∣∣∣ = x2(2x lnx+ x)− 2x2 lnx = x3 6= 0,

since we are on the domain (0,∞). Therefore the solutions are linearly independent.

6. Use reduction of order to find a second solution y2 to the differential equation

4t2y′′ + y = 0

given that y1 = t1/2 ln t is a solution.

Solution. Let y2 = vy1 = v(t1/2 ln t). We need to find y′2, y
′′
2 :

y′2 = v′(t1/2 ln t) + v(t1/2 ln t))′ = v′(t1/2 ln t) + v

(
1

2
t−1/2 ln t+ t−1/2

)
= v′(t1/2 ln t) + v

(
t−1/2

(
1

2
ln t+ 1

))
y′′2 = v′′(t1/2 ln t) + v′(t1/2 ln t)′ + v′

(
t−1/2

(
1

2
ln t+ 1

))
+ v

(
t−1/2

(
1

2
ln t+ 1

))′
= v′′(t1/2 ln t) + 2v′

(
t−1/2

(
1

2
ln t+ 1

))
+ v

(
−1

2
t−3/2

(
1

2
ln t+ 1

)
+ t−1/2 · 1

2t

)
= v′′(t1/2 ln t) + 2v′

(
t−1/2

(
1

2
ln t+ 1

))
+ v

(
−1

4
t−3/2 ln t

)

Now plug these into the original equation:

4t2y′′ + y = 4t2
(
v′′(t1/2 ln t) + 2v′

(
t−1/2

(
1

2
ln t+ 1

))
+ v

(
−1

4
t−3/2 ln t

))
+ v(t1/2 ln t)

= 4v′′t5/2 ln t+ 8t2v′
(
t−1/2

(
1

2
ln t+ 1

))
− t2v

(
t−3/2 ln t

)
+ v(t1/2 ln t)

= 4v′′t5/2 ln t+ 8t2v′
(
t−1/2

(
1

2
ln t+ 1

))
Now set this equal to 0:

4v′′t5/2 ln t+ 8t2v′
(
t−1/2

(
1

2
ln t+ 1

))
= 0
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Let w = v′, then w′ = v′′:

4w′t5/2 ln t+ 8t2w

(
t−1/2

(
1

2
ln t+ 1

))
= 0

This is a separable equation. We can rewrite w′ as dw
dx and get w’s on one side, t’s on the other:

4
dw

dt
t5/2 ln t = −8t2w

(
t−1/2

(
1

2
ln t+ 1

))
dw

w
=
−2t2

(
t−1/2

(
1
2 ln t+ 1

))
t5/2 ln t

Simplify the right hand side:
−t3/2 ln t− 2t3/2

t5/2 ln t
= −1

t
− 2

t ln t

Integrate both sides: ∫
dw

w
=

∫ (
−1

t
− 2

t ln t

)
dt

On the right hand side you will need to use the substitution a = ln t, da = 1
t dt:

ln |w| = − ln |t| − 2 ln | ln t|

Now solve for w. But first we need to combine the log terms on the right hand side:

ln |w| = ln

∣∣∣∣1t
∣∣∣∣+ ln

∣∣∣∣ 1

(ln t)2

∣∣∣∣
ln |w| = ln

∣∣∣∣ 1

t(ln t)2

∣∣∣∣
Take the exponential of both sides:

w =
1

t(ln t)2

But, w = v′, so

v =

∫
1

t(ln t)2
dt

and using the substitution a = ln t, da = 1
t dt,

v =

∫
1

a2
da = −1

a
= − 1

ln t.

Therefore

y2 = v2t
1/2 ln t = − 1

ln t
· t1/2 ln t = −t1/2.

7. Solve the following initial-value problems:

(a) y′′ − 2y′ + y = 0, y(0) = 5, y′(0) = 10

(b) y′′′ + 12y′′ + 36y′ = 0, y(0) = 0, y′(0) = 1, y′′(0) = −7

(c) y′′ + 16y = 0, y(0) = 2, y′(0) = −2
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Solution. (a) y′′ − 2y′ + y = 0 has the characteristic equation

r2 − 2r + 1 = 0 ⇒ (r − 1)2 = 0 r = 1 mult. 2

Therefore the general solution is y = c1e
t + c2te

t.We need to plug in the given initial conditions.
When t = 0, y = 5:

5 = c1 + c2 · 0 ⇒ c1 = 5.

Therefore y = 5et + c2te
t. Find y′:

y′ = 5et + c2(et + tet)

When t = 0, y = 10:
10 = 5 + c2 ⇒ c2 = 5.

Therefore y = 5et + 5tet.

(b) y′′′ + 12y′′ + 36y′ = 0 has the characteristic equation

r3 + 12r2 + 36r = 0 ⇒ r(r2 + 12r+ 36) = 0 ⇒ r(r+ 6)2 = 0 ⇒ r = 0, r = −6 mult. 2

Therefore the general solution is y = c1e
0t + c2e

−6t + c3te
−6t, or y = c1 + c2e

−6t + c3te
−6t. Find

y′ and y′′:

y′ = −6c2e
−6t + c3(e−6t − 6te−6t)

y′′ = 36c2e
−6t + c3(−6e−6t − 6e−6t + 36te−6t)

Plug in the initial conditions. When t = 0, y = 0, y′ = 1, y′′ = −7:

0 = c1 + c2

1 = −6c2 + c3

−7 = 36c2 − 12c3

The solution to this system is c1 = 5
36 , c2 = − 5

36 , c3 = 1
6 . Therefore y = 5

36 −
5
36e
−6t + 1

6 te
−6t.

(c) y′′ + 16y = 0 has the characteristic equation

r2 + 16 = 0 ⇒ r = ±4i

Therefore the general solution is y = c1 cos 4t+ c2 sin 4t. Find y′:

y′ = −4c1 sin 4t+ 4c2 cos 4t.

When t = 0, y = 2, y′ = −2:

2 = c1

−2 = 4c2

which has the solution c1 = 2, c2 = − 1
2 . Therefore y = 2 cos 4t− 1

2 sin 4t.

8. Suppose you are solving the equation y′′ + P (t)y′ +Q(t)y = g(t), where P (t) and Q(t) are constants,
using the method of undetermined coefficients. Complete the table below. Assume g(t) has no function
in common with the homogeneous solution yh.
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g(t) Form of yp

3t2 − 2 (a)

(b) Ae5t

6t2 + 2− 12e−2t (c)

e3t sin 4t (d)

(e) (At+B)e−3t

1− t2e−t (f)

3 cos 2t (g)

(h) At+B

4t(1 + 3 sin t) (i)

List your solutions for (a) - (i) below:

Solution. (a) g(t) is a second degree polynomial, so we must guess a second degree polynomial:
yp = At2 +Bt+ C

(b) yp is an exponential function, so g must have also been an exponential function: g = 100e5t

(answers will vary)

(c) g(t) is a second degree polynomial added to an exponential function, so we must guess a second
degree polynomial added to an exponential function: yp = At2 +Bt+ C + Ee−2t.

(d) g(t) is an exponential function multiplied by a sine function, so we must also guess an exponential
function multiplied by a sine function (we will also have to include a cosine function since sine
and cosine come in pairs): yp = Ae3t sin 4t+Be3t cos 4t

(e) yp is a first degree polynomial multiplied by an exponential function, so g must have been a first
degree polynomial multiplied by an exponential function: g = 18te−3t (answers will vary)

(f) g(t) is a constant term added to a second degree polynomial multiplied by an exponential function,
so we guess the same thing: yp = A+ (Bt2 + Ct+ E)e−t

(g) g(t) is a cosine function, so we must also guess a cosine function (we will also have to include a
sine function since sine and cosine come in pairs): yp = A cos 2t+B sin 2t

(h) yp is a first degree polynomial, so g must have also been a first degree polynomial: g = −t + 3
(answers will vary)

(i) Distribute first:
g = 4t+ 12t sin t

g is a first degree polynomial added to a first degree polynomial multiplied by a sine function, so
we must also guess the same thing (we will also have to include a cosine function since sine and
cosine come in pairs): yp = At+B + (Ct+ E) sin t+ (Ft+G) cos t

9. Solve the given differential equation using the method of undetermined coefficients.

y′′ + 2y′ = 3 + 4 sin 2t.
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Solution. We first find the homogeneous solution:

y′′ + 2y′ = 0

has the characteristic equation

r2 + 2r = 0 ⇒ r(r + 2) = 0 r = 0, r = −2

therefore the homogeneous solution is yh = c1 + c2e
−2t.

Now we guess a particular solution. g(t) = 3 + 4 sin 2t, which is a constant term added to a sine term.
We must also guess the same thing, but we will need to include a cosine term as well since sine and
cosine come in pairs:

yp = A+B sin 2t+ C cos 2t.

Now we compare with yh to check if there are any solutions in common. Notice that yp has a constant
term in common with yh (c1), so we must multiply our constant A by t (“bump it up”) so there is no
more overlap:

yp = At+B sin 2t+ C cos 2t.

We compare again with yh, and we see there are no more solutions in common, so this is our final
guess.

Find y′p, y
′′
p :

y′p = A+ 2B cos 2t− 2C sin 2t

y′′p = −4B sin 2t− 4C cos 2t

Substitute these values into our equation above:

y′′ + 2y′ = −4B sin 2t− 4C cos 2t+ 2(A+ 2B cos 2t− 2C sin 2t)

= −4B sin 2t− 4C cos 2t+ 2A+ 4B cos 2t− 4C sin 2t

Set this equal to g(t):

−4B sin 2t− 4C cos 2t+ 2A+ 4B cos 2t− 4C sin 2t = 3 + 4 sin 2t

Set like terms equal to each other:

2A = 3

−4B − 4C = 4

−4C + 4B = 0

The solution to this system is A = 3
2 , B = − 1

2 , C = − 1
2 , therefore the particular solution is yp =

3
2 t−

1
2 sin 2t− 1

2 cos 2t. The general solution is y = yh + yp:

y = c1 + c2e
−2t +

3

2
t− 1

2
sin 2t− 1

2
cos 2t.

10. Solve the given initial-value problem.

y′′ + 4y′ + 4y = (3 + t)e−2t, y(0) = 2, y′(0) = 5

Solution. We first find the homogeneous solution:

y′′ + 4y′ + 4y = 0
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has the characteristic equation

r2 + 4r + 4 = 0 ⇒ (r + 2)2 = 0 ⇒ r = −2 mult. 2

therefore the homogeneous solution is yh = c1e
−2t + c2te

−2t.

We can use either the method of undetermined coefficients or variation of parameters to solve this
equation. We will do both.

Undetermined coefficients: We need to guess our particular solution. g(t) = (3+ t)e−2t is a first degree
polynomial multiplied by an exponential term. We must also guess the same thing:

yp = (At+B)e−2t

Now we compare with yh to check if there are any solutions in common. Notice that yp has both e−2t

and te−2t in common with yh, so we must multiply yp by t (“bump it up”):

yp = t(At+B)e−2t

We compare again with yh, and we see that yp has te−2t in common with yh, so we must multiply yp
again by t (“ bump it up”):

yp = t2(At+B)e−2t

We compare again with yh, and we see there are no more solutions in common, so this is our final
guess.

Find y′p, y
′′
p :

yp = (At3 +Bt2)e−2t

y′p = (3At2 + 2Bt)e−2t − 2(At3 +Bt2)e−2t

y′′p = (6At+ 2B)e−2t − 2(3At2 + 2Bt)e−2t − 2(3At2 + 2Bt)e−2t + 4(At3 +Bt2)e−2t

Substitute these values into our equation above:

y′′ + 4y′ + 4y = (6At+ 2B)e−2t − 4(3At2 + 2Bt)e−2t + 4(At3 +Bt2)e−2t

+ 4
(
(3At2 + 2Bt)e−2t − 2(At3 +Bt2)e−2t

)
+ 4(At3 +Bt2)e−2t

= (6At+ 2B)e−2t − 4(3At2 + 2Bt)e−2t + 4(At3 +Bt2)e−2t + 4(3At2 + 2Bt)e−2t

− 8(At3 +Bt2)e−2t + 4(At3 +Bt2)e−2t

= (6At+ 2B)e−2t

Set this equal to g(t):
(6At+ 2B)e−2t = (3 + t)e−2t

Set like terms equal to each other:

6A = 1

2B = 3

The solution to this system is A = 1
6 , B = 3

2 , therefore the particular solution is yp =
(
1
6 t

3 + 3
2 t

2
)
e−2t.

The general solution is y = yh + yp:

y = c1e
−2t + c2te

−2t +

(
1

6
t3 +

3

2
t2
)
e−2t.

Variation of Parameters: Let y1 = e−2t, y2 = te−2t (these come from yh above). Then

W =

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ =

∣∣∣∣ e−2t te−2t

−2e−2t e−2t − 2te−2t

∣∣∣∣ = e−2t(e−2t − 2te−2t)− (−2e−2t)(te−2t) = e−4t

W1 =

∣∣∣∣0 y2
g y′2

∣∣∣∣ =

∣∣∣∣ 0 te−2t

(3 + t)e−2t e−2t − 2te−2t

∣∣∣∣ = −(3 + t)e−2t(te−2t) = −(3 + t)te−4t

W2 =

∣∣∣∣y1 0
y′1 g

∣∣∣∣ =

∣∣∣∣ e−2t 0
−2e−2t (3 + t)e−2t

∣∣∣∣ = e−2t(3 + t)e−2t = (3 + t)e−4t
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Find u1, u2:

u′1 =
W1

W
=
−(3 + t)te−4t

e−4t
= −3t− t2 ⇒ u1 =

∫
(−3t− t2)dt = −3

2
t2 − 1

3
t3

u′2 =
W2

W
=

(3 + t)e−4t

e−4t
= 3 + t ⇒ u2 =

∫
(3 + t)dt = 3t+

1

2
t2

The particular solution is yp = u1y1 + u2y2:

yp =

(
−3

2
t2 − 1

3
t3
)
e−2t +

(
3t+

1

2
t2
)
te−2t

= −3

2
t2e−2t − 1

3
t3e−2t + 3te−2t +

1

2
t3e−2t

=
3

2
t2e−2t +

1

6
t3e−2t

The general solution is y = yh + yp:

y = c1e
−2t + c2te

−2t +

(
1

6
t3 +

3

2
t2
)
e−2t.

We aren’t finished! We need to find c1, c2 given y(0) = 2, y′(0) = 5. Find y′:

y = c1e
−2t + c2te

−2t +

(
1

6
t3 +

3

2
t2
)
e−2t

y′ = −2c1e
−2t + c2(e−2t − 2te−2t) +

(
1

2
t2 + 3t

)
e−2t − 2

(
1

6
t3 +

3

2
t2
)
e−2t

When t = 0, y = 2, y′ = 5:

2 = c1

5 = −2c1 + c2

The solution to this system is c1 = 2, c2 = 9, therefore the general solution is

y = 2e−2t + 9te−2t +

(
1

6
t3 +

3

2
t2
)
e−2t.

11. Find the general solution of the given differential equation using variation of parameters.

y′′ + y = tan t

Solution. We first find the homogeneous solution:

y′′ + y = 0

has the characteristic equation
r2 + 1 = 0 ⇒ r = ±i

therefore the homogeneous solution is y = c1 cos t+ c2 sin t.

Let y1 = cos t, y2 = sin t. Then

W =

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ =

∣∣∣∣ cos t sin t
− sin t cos t

∣∣∣∣ = cos2 t+ sin2 t = 1

W1 =

∣∣∣∣0 y2
g y′2

∣∣∣∣ =

∣∣∣∣ 0 sin t
tan t cos t

∣∣∣∣ = − sin t tan t = − sin2 t

cos t

W2 =

∣∣∣∣y1 0
y′1 g

∣∣∣∣ =

∣∣∣∣ cos t 0
− sin t tan t

∣∣∣∣ = cos t tan t = sin t
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Find u1 and u2:

u′1 =
W1

W
= − sin2 t

cos t

⇒ u1 = −
∫

sin2 t

cos t
dt = −

∫
1− cos2 t

cos t
dt = −

∫
(sec t− cos t)dt = − ln | sec t+ tan t|+ sin t

u′2 =
W2

W
= sin t

⇒ u2 =

∫
sin tdt = − cos t

The particular solution is yp = u1y1 + u2y2:

yp = (− ln | sec t+ tan t|+ sin t) cos t+ sin t cos t = − cos t ln | sec t+ tan t|

The general solution is y = yh + yp:

y = c1 cos t+ c2 sin t− cos t ln | sec t+ tan t|.

12. y1 = cos(ln t), y2 = sin(ln t) are independent solutions of the equation

t2y′′ + ty′ + y = sec(ln t).

Find the general solution of the equation.

Solution. Use variation of parameters to solve. Write the equation in standard form:

y′′ +
1

t
y′ +

1

t2
y =

sec(ln t)

t2

We are given that the homogeneous solution is

yh = c1 cos(ln t) + c2 sin(ln t).

Let y1 = cos(ln t), y2 = sin(ln t). Then

W =

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ =

∣∣∣∣cos(ln t) sin(ln t)

− sin(ln t)
t

cos(ln t)
t

∣∣∣∣ =
cos2(ln t)

t
+

sin2(ln t)

t
=

1

t

W1 =

∣∣∣∣0 y2
g y′2

∣∣∣∣ =

∣∣∣∣ 0 sin(ln t)
sec(ln t)
t2

cos(ln t)
t

∣∣∣∣ = − sin(ln t) sec(ln t)

t2
= − tan(ln t)

t2

W2 =

∣∣∣∣y1 0
y′1 g

∣∣∣∣ =

∣∣∣∣cos(ln t) 0

− sin(ln t)
t

sec(ln t)
t2

∣∣∣∣ =
1

t2

Find u1 and u2:

u′1 =
W1

W
=
− tan(ln t)

t2

1
t

= − tan(ln t)

t

⇒ u1 = −
∫

tan(ln t)

t
dt = −

∫
tan ada = −

∫
sin a

cos a
da =

∫
1

b
db = ln |b| = ln | cos(ln t)|

u′2 =
W2

W
=

1
t2

1
t

=
1

t

⇒ u2 =

∫
1

t
dt = ln |t|
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For u1 we used the substitutions a = ln t, da = 1
t dt, and b = cos a, db = − sin ada. The particular

solution is yp = u1y1 + u2y2:

y = ln | cos(ln t)|(cos(ln t)) + ln |t|(sin(ln t)).

The general solution is y = yh + yp:

y = c1 cos(ln t) + c2 sin(ln t) + ln | cos(ln t)|(cos(ln t)) + ln |t|(sin(ln t)).

13. Solve the given initial-value problem:

x′ =

(
1
2 0
1 − 1

2

)
x, x(0) =

(
3
5

)
Solution. We first find the eigenvalues. Our matrix is a lower triangular matrix, therefore the eigen-
values are the diagonal entries: λ1 = 1

2 , λ2 = − 1
2 . You can also calculate these the usual way:∣∣∣∣ 12 − λ 0

1 − 1
2 − λ

∣∣∣∣ =

(
1

2
− λ
)(
−1

2
− λ
)

= 0 ⇒ λ1 =
1

2
, λ2 = −1

2
.

Now use the equation (A− λI)v = 0 to find the eigenvectors. When λ1 = 1
2 :(

1
2 −

1
2 0 0

1 − 1
2 −

1
2 0

)
⇒

(
0 0 0
1 −1 0

)

The second row tells us that x1 = x2, x2 is free. Therefore the first eigenvector is v1 =

(
1
1

)
. When

λ2 = − 1
2 : (

1
2 + 1

2 0 0
1 − 1

2 + 1
2 0

)
⇒

(
1 0 0
1 0 0

)
The first row tells us that x1 = 0, x2 is free. Therefore the second eigenvector is v2 =

(
0
1

)
.

Since λ1, λ2 are real and distinct, then the general solution is

x = c1

(
1
1

)
et/2 + c2

(
0
1

)
e−t/2.

Now plug in the initial condition. When t = 0, x =

(
3
5

)
:

(
3
5

)
= c1

(
1
1

)
+ c2

(
0
1

)
which yields the system

3 = c1

5 = c1 + c2

The solution to this system is c1 = 3, c2 = 2. Therefore the solution is

x = 3

(
1
1

)
et/2 + 2

(
0
1

)
e−t/2.
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14. Solve the given initial-value problem:

x′ =

(
2 4
−1 6

)
x, x(0) =

(
−1
6

)
Solution. We first find the eigenvalues:∣∣∣∣2− λ 4
−1 6− λ

∣∣∣∣ = (2−λ)(6−λ)+4 = 12−8λ+λ2+4 = λ2−8λ+16 = (λ−4)2 = 0 ⇒ λ = 4 mult. 2

Now use the equation (A− λI)v = 0 to find the eigenvectors. When λ = 4:(
2− 4 4 0
−1 6− 4 0

)
⇒

(
−2 4 0
−1 2 0

)
The second equation tells us that x1 = 2x2, x2 is free. Therefore we only get one eigenvector, and it is

v1 =

(
2
1

)
. Since we only have one eigenvector, we will have to “bump up” our solution (i.e. there will

be a te4t term in our solution). We need to find a second eigenvector, so we now solve the equation
(A− λI)v2 = v1: (

−2 4 2
−1 2 1

)
The second equation tells us that x1 = 2x2− 1, x2 is free. If we let x2 = 0 then the second eigenvector

is v2 =

(
−1
0

)
.

Since λ = 4 is a real repeated root and we only found one eigenvector in the beginning, then the general
solution is

x = c1

(
2
1

)
e4t + c2

((
2
1

)
te4t

(
−1
0

)
e4t
)

Now plug in the initial condition. When t = 0, x =

(
−1
6

)
:

(
−1
6

)
= c1

(
2
1

)
+ c2

(
−1
0

)
which yields the system

−1 = 2c1 − c2
6 = c1

The solution to this system is c1 = 6, c2 = 13. Therefore the solution is

x = 6

(
2
1

)
e4t + 13

((
2
1

)
te4t

(
−1
0

)
e4t
)

= 6

(
2
1

)
e4t + 13

(
−1
0

)
e4t + 13

(
2
1

)
te4t

=

(
−1
6

)
e4t +

(
26
13

)
te4t.

15. Solve the given initial-value problem:

x′ =

(
6 −1
5 4

)
x, x(0) =

(
−2
8

)
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Solution. We first find the eigenvalues:∣∣∣∣6− λ −1
5 4− λ

∣∣∣∣ = (6− λ)(4− λ) + 5 = 24− 10λ+ λ2 + 5 = λ2 − 10λ+ 29 = 0

Use the quadratic formula to solve for λ:

λ =
10±

√
100− 4(1)(29)

2
=

10±
√
−16

2
=

10± 4i

2
= 5± 2i

Therefore λ1 = 5 + 2i, λ2 = 5− 2i.

Now use the equation (A− λI)v = 0 to find the eigenvectors. When λ = 5 + 2i:(
6− (5 + 2i) −1 0

5 4− (5 + 2i) 0

)
⇒

(
1− 2i −1 0

5 −1− 2i 0

)

The first row says that (1−2i)x1 = x2. If we choose x1 = 1, then the first eigenvector is v1 =

(
1

1− 2i

)
.

The second eigenvector will then be v2 =

(
1

1 + 2i

)
. The general solution is therefore

x = c1

(
1

1− 2i

)
e(5+2i)t + c2

(
1

1 + 2i

)
e(5−2i)t,

however, we wish to write our answer as a real solution. Here we will expand both v1e
λ1t and v2e

λ2t

and see why it is enough to only expand v1e
λ1t to get our solution.(

1
1− 2i

)
e(5+2i)t =

(
1

1− 2i

)
e5tei2t =

(
1

1− 2i

)
e5t(cos 2t+ i sin 2t)

= e5t
(

cos 2t+ i sin 2t
cos 2t+ i sin 2t− 2i cos 2t+ 2 sin 2t

)
= e5t

(
cos 2t

cos 2t+ 2 sin 2t

)
+ ie5t

(
sin 2t

sin 2t− 2 cos 2t

)
(

1
1 + 2i

)
e(5−2i)t =

(
1

1 + 2i

)
e5te−i2t =

(
1

1 + 2i

)
e5t(cos (−2t) + i sin (−2t)) =

(
1

1 + 2i

)
e5t(cos 2t− i sin 2t)

= e5t
(

cos 2t− i sin 2t
cos 2t− sin 2t+ 2i cos 2t+ 2 sin 2t

)
= e5t

(
cos 2t

cos 2t+ 2 sin 2t

)
− ie5t

(
sin 2t

sin 2t− 2 cos 2t

)
Notice that the expansions of v1e

λ1t and v2e
λ2t only differ by a sign! If you know the real and

imaginary part of one of the expansions, you already know the other. This is why we have only done
the expansion of v1e

λ1t in section. We plug these expansions into our general solution:

x = c1

(
e5t
(

cos 2t
cos 2t+ 2 sin 2t

)
+ ie5t

(
sin 2t

sin 2t− 2 cos 2t

))
+ c2

(
e5t
(

cos 2t
cos 2t+ 2 sin 2t

)
− ie5t

(
sin 2t

sin 2t− 2 cos 2t

))
= (c1 + c2)e5t

(
cos 2t

cos 2t+ 2 sin 2t

)
+ i(c1 − c2)e5t

(
sin 2t

sin 2t− 2 cos 2t

)
Relabel the constants to get the general solution

x = c1e
5t

(
cos 2t

cos 2t+ 2 sin 2t

)
+ c2e

5t

(
sin 2t

sin 2t− 2 cos 2t

)
,

which is just the real and imaginary parts of v1e
λ1t.
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Now we must plug in the initial value. When t = 0, x =

(
−2
8

)
:

(
−2
8

)
= c1

(
1
1

)
+ c2

(
0
−2

)
which yields the system

−2 = c1

8 = c1 − 2c2

This system has the solution c1 = −2, c2 = −5, therefore the solution is

x = −2e5t
(

cos 2t
cos 2t+ 2 sin 2t

)
− 5e5t

(
sin 2t

sin 2t− 2 cos 2t

)
= e5t

(
−2 cos 2t− 5 sin 2t

−2 cos 2t− 4 sin 2t− 5 sin 2t+ 10 cos 2t

)
= e5t

(
−2 cos 2t− 5 sin 2t
8 cos 2t− 9 sin 2t

)

16. Solve x′ =

 1 −2 2
−2 1 −2
2 −2 1

x.

Solution. We begin by finding the eigenvalues:∣∣∣∣∣∣
1− λ −2 2
−2 1− λ −2
2 −2 1− λ

∣∣∣∣∣∣ = (1− λ)

∣∣∣∣1− λ −2
−2 1− λ

∣∣∣∣+ 2

∣∣∣∣−2 −2
2 1− λ

∣∣∣∣+ 2

∣∣∣∣−2 1− λ
2 −2

∣∣∣∣
= (1− λ)[(1− λ)(1− λ)− 4] + 2[−2(1− λ) + 4] + 2[4− 2(1− λ)]

= (1− λ)(λ2 − 2λ− 3) + 2(2λ+ 2) + 2(2λ+ 2)

= λ2 − 2λ− 3− λ3 + 2λ2 + 3λ+ 4λ+ 4 + 4λ+ 4

= −λ3 + 3λ2 + 9λ+ 5

Let p(λ) denote the polynomial above. Since the last term of p(λ) is 5 and the first term of p(λ) is 1,
the possible roots of p(λ) are ± 1,5

1 = ±1, 5. We then test each of these numbers until we get p(λ) = 0.
Start with 1:

p(1) = −1 + 3 + 9 + 5 6= 0,

so 1 is not a zero of p(λ). Move onto −1:

p(−1) = 1 + 3− 9 + 5 = 0,

so −1 is a zero of p(λ). This implies that λ − (−1) = λ + 1 is a factor of p(λ). Use long division to
divide p(λ) by λ+ 1:

−λ3 + 3λ2 + 9λ+ 5

λ+ 1
= −λ2 + 4λ+ 5

Therefore p(λ) = (λ+ 1)(−λ2 + 4λ+ 5) and can be factored as

p(λ) = −(λ+ 1)2(λ− 5).

Therefore the eigenvalues are λ = −1 mult. 2, λ = 5.
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Now we find the eigenvectors. Start with λ = −1: 1− (−1) −2 2 0
−2 1− (−1) −2 0
2 −2 1− (−1) 0

 ⇒

 2 −2 2 0
−2 2 −2 0
2 −2 2 0

 ⇒

 1 −1 1 0
0 0 0 0
0 0 0 0


We have two rows of zeros, hence we have two free variables. The first row tells us that x1 = x2 − x3.
We can write the general solution of the system as

v =

x1x2
x3

 =

x2 − x3x2
x3

 =

1
1
0

x2 +

−1
0
1

x3

Choose x2 = 1, x3 = 0, and then x2 = 0, x3 = 1 to get the eigenvectors

v1 =

1
1
0

 ,v2 =

−1
0
1


Notice that we have 2 eigenvectors which matches the multiplicity of the eigenvalue λ = −1. This
means two things: we do not need to go find any more eigenvectors, AND we do not need to have a
te−t as part of our solution because we found two independent eigenvectors (i.e. we do not need to
“bump up” the solution). Now we find the eigenvector for when λ = 5: 1− 5 −2 2 0

−2 1− 5 −2 0
2 −2 1− 5 0

 ⇒

 −4 −2 2 0
−2 −4 −2 0
2 −2 −4 0

 ⇒

 1 −1 −2 0
0 1 1 0
0 0 0 0


(We skipped a couple of steps.) The first row tells us that x1 = x2 + 2x3, and the second row tells us
that x2 = −x3. If we choose x3 = 1, then x2 = −1 and x1 = 1. Therefore the third eigenvector is

v3 =

 1
−1
1


Therefore the general solution is

x = c1

1
1
0

 e−t + c2

−1
0
1

 e−t + c3

 1
−1
1

 e5t.

17. Solve x′ =

2 1 6
0 2 5
0 0 2

x.

Solution. We begin by finding the eigenvalues. Because our matrix is an upper triangular matrix, the
eigenvalues are the diagonal entries, hence λ = 2 mult. 3. We now find the eigenvectors for λ = 2: 2− 2 1 6 0

0 2− 2 5 0
0 0 2− 2 0

 ⇒

 0 1 6 0
0 0 5 0
0 0 0 0


The second row tells us that x3 = 0, and the first row tells us that x2 = −6x3. But this implies that
x2 = 0. x1 is our free variable, so we can choose it to be 1, and we get the eigenvector

v1 =

1
0
0


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We only found one eigenvector, which is less than the multiplicity of our eigenvalue. This means two
things: we must find more eigenvectors, and we must have a te2t in our solution (i.e. we must “bump
up” our solution). We find the next eigenvector by solving the equation (A− Iλ)v2 = v1: 0 1 6 1

0 0 5 0
0 0 0 0


The second row tells us x3 = 0, and the first row tells us that x2 = −6x3 +1, which means that x2 = 1.
x1 is free, so if we choose it to be 0 then the second eigenvector is

v2 =

0
1
0


We need to find another eigenvector, so we solve the equation (A− Iλ)v3 = v2: 0 1 6 0

0 0 5 1
0 0 0 0


The second row tells us that x3 = 1

5 , the first row tells us that x2 = −6x3 = − 6
5 . x1 is free, so if we

choose it to be 0 then the third eigenvector is

v3 =

 0
− 6

5
1
5

 .

Therefore the solution is

x = c1

1
0
0

 e2t + c2

1
0
0

 te2t +

0
1
0

 e2t

+ c3

1
0
0

 t2

2
e2t +

0
1
0

 te2t +

 0
− 6

5
1
5

 e2t

 .

18. Solve x′ =

 4 0 1
0 6 0
−4 0 4

x.

Solution. We begin by finding the eigenvalues:∣∣∣∣∣∣
4− λ 0 1

0 6− λ 0
−4 0 4− λ

∣∣∣∣∣∣ = (4− λ)

∣∣∣∣6− λ 0
0 4− λ

∣∣∣∣− 0 + 1

∣∣∣∣ 0 6− λ
−4 0

∣∣∣∣
= (4− λ)(6− λ)(4− λ) + 4(6− λ)

= (6− λ)[(4− λ)(4− λ) + 4]

= (6− λ)(λ2 − 8λ+ 20)

We use the quadratic formula to find the eigenvalues of λ2 − 8λ+ 20:

λ =
8±

√
64− 4(1)(20)

2
=

8±
√
−16

2
=

8± 4i

2
= 4± 2i

Therefore the eigenvalues are λ1 = 6, λ2 = 4 + 2i, λ3 = 4− 2i. When λ1 = 6: 4− 6 0 1 0
0 6− 6 0 0
−4 0 4− 6 0

 ⇒

 −2 0 1 0
0 0 0 0
−4 0 −2 0

 ⇒

 −2 0 1 0
0 0 0 0
0 0 −4 0


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The last row tells us that x3 = 0, the first row tells us that 2x1 = x3 which implies that x1 = 0. x2 is
free, so if we choose it to be 1 then we have the eigenvector

v1 =

0
1
0


When λ2 = 4 + 2i: 4− (4 + 2i) 0 1 0

0 6− (4 + 2i) 0 0
−4 0 4− (4 + 2i) 0

 ⇒

 −2i 0 1 0
0 2− 2i 0 0
−4 0 −2i 0


The second row tells us that (2 − 2i)x2 = 0, or that x2 = 0. The first row tells us that 2ix1 = x3. If
we choose x1 = 1, then we have the eigenvector

v2 =

 1
0
2i

 .

This implies that the third eigenvector is

v3 =

 1
0
−2i

 .

Therefore the solution to the system is

x = c1

0
1
0

 e6t + c2

 1
0
2i

 e(4+2i)t + c3

 1
0
−2i

 e(4−2i)t,

however we want to write our solution as a real solution. Therefore we must expand v2e
λ2t (you can

also do the same for v3e
λ3t as seen in the solution to Problem 15, but it is enough to just do one

expansion):  1
0
2i

 e4tei2t =

 1
0
2i

 e4t(cos 2t+ i sin 2t) = e4t

 cos 2t+ i sin 2t
0

2i cos 2t− 2 sin 2t


= e4t

 cos 2t
0

−2 sin 2t

+ ie4t

 sin 2t
0

2 cos 2t

 .

Therefore the general solution can be written as

x = c1

0
1
0

 e6t + c2e
4t

 cos 2t
0

−2 sin 2t

+ c3e
4t

 sin 2t
0

2 cos 2t

 .
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