

## Quiz 2 Solutions

January 31, 2016

1. Find the general solution of the ODE  $ty' + 2y = t^2$ .

*Solution.* Write the equation in standard form:  $y' + \frac{2}{t}y = t$ . Here we see that  $P(t) = \frac{2}{t}$ , hence the integrating factor is

$$\mu(t) = \exp\left(\int P(t)dt\right) = \exp\left(\int \frac{2}{t}dt\right) = e^{2\ln t} = e^{\ln t^2} = t^2.$$

We then multiply our standard form equation by the integrating factor  $\mu = t^2$ :

$$t^2\left(y' + \frac{2}{t}y = t\right) \Rightarrow t^2y' + 2ty = t^3.$$

The left side can be written as a product rule:  $\frac{d}{dt}(t^2y) = t^3$ . We integrate both sides:

$$\int \frac{d}{dt}(t^2y)dt = \int t^3dt \Rightarrow t^2y = \frac{t^4}{4} + C$$

Then solve for  $y$ :

$$y = \frac{\frac{t^4}{4} + C}{t^2} \Rightarrow y = \frac{t^2}{4} + \frac{C}{t^2}.$$

□

2. Find the general solution of the following ODE. Leave your answer as an implicit function of  $y$ .

$$\frac{dy}{dx} = \frac{x}{x^2y^2 + 3y^2}.$$

*Solution.* This is a separable equation. Factor the denominator:

$$\frac{dy}{dx} = \frac{x}{y^2(x^2 + 3)}$$

Separate the variables:

$$y^2dy = \frac{x}{x^2 + 3}dx$$

Integrate both sides:

$$\int y^2dy = \int \frac{x}{x^2 + 3}dx \Rightarrow \frac{y^3}{3} = \ln|x^2 + 3| + C.$$

This is the general solution in implicit form (i.e. we did not solve for  $y$ ).  
(Note: use the substitution  $u = x^2 + 3$  to evaluate the integral above.)

□