

# Math 6A: Line Integral “Quiz” Solutions

May 1, 2016

1. Evaluate  $\int_C xydx + x^2dy$  where  $C$  is the rectangle with vertices  $(0, 0), (3, 0), (3, 1), (0, 1)$  oriented counter-clockwise.

*Solution.* Oriented counter-clockwise means we move around the box counter-clockwise; i.e. we start at  $(0, 0)$  then move to  $(3, 0)$ , then to  $(3, 1)$ , then to  $(0, 1)$ , and back to  $(0, 0)$ . We will split up our integral along each side of the box and then add all the integrals together at the end. Let  $C_1$  denote the line from  $(0, 0)$  to  $(3, 0)$ ,  $C_2$  denote the line from  $(3, 0)$  to  $(3, 1)$ ,  $C_3$  denote the line from  $(3, 1)$  to  $(0, 1)$ , and  $C_4$  denote the line from  $(0, 1)$  to  $(0, 0)$ .

Along  $C_1$ : The starting point is  $(0, 0)$  and the ending point is  $(3, 0)$ , therefore the parametrization of this line is given by

$$\mathbf{r}(t) = (1 - t)\langle 0, 0 \rangle + t\langle 3, 0 \rangle \Rightarrow \mathbf{r}(t) = \langle 3t, 0 \rangle, \quad 0 \leq t \leq 1.$$

So  $x = 3t, y = 0$  and  $dx = 3dt, dy = 0dt$ . Plugging these into our line integral, we have

$$\int_{C_1} xydx + x^2dy = \int_0^1 3t \cdot 0 \cdot 3dt + (3t)^2 \cdot 0dt = 0.$$

Along  $C_2$ : The starting point is  $(3, 0)$  and the ending point is  $(3, 1)$ , therefore the parametrization of this line is given by

$$\mathbf{r}(t) = (1 - t)\langle 3, 0 \rangle + t\langle 3, 1 \rangle \Rightarrow \mathbf{r}(t) = \langle 3, t \rangle, \quad 0 \leq t \leq 1.$$

So  $x = 3, y = t$  and  $dx = 0dt, dy = dt$ . Plugging these into our line integral, we have

$$\int_{C_2} xydx + x^2dy = \int_0^1 3 \cdot t \cdot 0dt + 3^2dt = \int_0^1 9dt = 9.$$

Along  $C_3$ : The starting point is  $(3, 1)$  and the ending point is  $(0, 1)$ , therefore the parametrization of this line is given by

$$\mathbf{r}(t) = (1 - t)\langle 3, 1 \rangle + t\langle 0, 1 \rangle \Rightarrow \mathbf{r}(t) = \langle 3 - 3t, 1 \rangle, \quad 0 \leq t \leq 1.$$

So  $x = 3 - 3t, y = 1$  and  $dx = -3dt, dy = 0dt$ . Plugging these into our line integral, we have

$$\int_{C_3} xydx + x^2dy = \int_0^1 (3 - 3t) \cdot 1 \cdot (-3)dt + (3 - 3t)^2 \cdot 0dt = \int_0^1 (9t - 9)dt = -\frac{9}{2}.$$

Along  $C_4$ : The starting point is  $(0, 1)$  and the ending point is  $(0, 0)$ , therefore the parametrization of this line is given by

$$\mathbf{r}(t) = (1 - t)\langle 0, 1 \rangle + t\langle 0, 0 \rangle \Rightarrow \mathbf{r}(t) = \langle 0, 1 - t \rangle, \quad 0 \leq t \leq 1.$$

So  $x = 0, y = 1 - t$  and  $dx = 0dt, dy = -dt$ . Plugging these into our line integral, we have

$$\int_{C_4} xydx + x^2dy = \int_0^1 0 \cdot (1 - t) \cdot 0dt + 0^2 \cdot (-dt) = 0.$$

Therefore

$$\int_C xydx + x^2dy = 0 + 9 + \left(-\frac{9}{2}\right) + 0 = \frac{9}{2}.$$

□

2. Evaluate  $\int_C \mathbf{F} \cdot d\mathbf{r}$  where  $\mathbf{F}(x, y, z) = \sin x \mathbf{i} + \cos y \mathbf{j} + xz \mathbf{k}$  and  $C$  is given by the parametrization  $\mathbf{r}(t) = t^3 \mathbf{i} - t^2 \mathbf{j} + t \mathbf{k}, 0 \leq t \leq 1$ .

*Solution.*  $\mathbf{r}'(t) = \langle 3t^2, -2t, 1 \rangle$  and  $\mathbf{F}(\mathbf{r}(t)) = \langle \sin(t^3), \cos(-t^2), t^3 \cdot t \rangle$ , therefore

$$\begin{aligned} \int_C \mathbf{F} \cdot d\mathbf{r} &= \int_0^1 \langle \sin(t^3), \cos(-t^2), t^4 \rangle \cdot \langle 3t^2, -2t, 1 \rangle dt \\ &= \int_0^1 (3t^2 \sin(t^3) - 2t \cos(-t^2) + t^4) dt \\ &= -\cos(t^3) + \sin(-t^2) + \frac{1}{5}t^5 \Big|_0^1 \\ &= -\cos(1) + \sin(1) + \frac{1}{5} - (-\cos(0) + \sin(0) + 0) \\ &= -\cos(1) + \sin(1) + \frac{6}{5} \end{aligned}$$

Note: a  $u$ -substitution was used to evaluate the integral.  $\square$

3. A thin wire in the shape of a curve  $C$  with linear density  $\rho(x, y)$  has **mass**

$$m = \int_C \rho(x, y) ds$$

and **center of mass**  $(\bar{x}, \bar{y})$  where

$$\bar{x} = \frac{1}{m} \int_C x \rho(x, y) ds, \quad \bar{y} = \frac{1}{m} \int_C y \rho(x, y) ds.$$

Find the mass and center of mass of a wire bent in the shape of a semicircle  $x^2 + y^2 = 4, x \geq 0$  with linear density  $\rho(x, y) = k$  where  $k$  is a constant.

*Solution.* The parametrization of the given semicircle is

$$\mathbf{r}(t) = \langle 2 \cos t, 2 \sin t \rangle, \quad -\frac{\pi}{2} \leq t \leq \frac{\pi}{2}.$$

Notice that  $\mathbf{r}'(t) = \langle -2 \sin t, 2 \cos t \rangle$ , hence  $\|\mathbf{r}'(t)\| = 2$ .

The mass of the wire is

$$m = \int_C \rho(x, y) ds = \int_{-\pi/2}^{\pi/2} k \|\mathbf{r}'(t)\| dt = \int_{-\pi/2}^{\pi/2} 2k dt = 2kt \Big|_{-\pi/2}^{\pi/2} = 2k\pi.$$

The  $x$ -coordinate of the center of mass is given by

$$\bar{x} = \frac{1}{m} \int_C x \rho(x, y) ds = \frac{1}{2k\pi} \int_{-\pi/2}^{\pi/2} 2 \cos t \cdot k \|\mathbf{r}'(t)\| dt = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} 2 \cos t dt = \frac{2}{\pi} \sin t \Big|_{-\pi/2}^{\pi/2} = \frac{4}{\pi}.$$

The  $y$ -coordinate of the center of mass is given by

$$\bar{y} = \frac{1}{m} \int_C y \rho(x, y) ds = \frac{1}{2k\pi} \int_{-\pi/2}^{\pi/2} 2 \sin t \cdot k \|\mathbf{r}'(t)\| dt = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} 2 \sin t dt = \frac{2}{\pi} (-\cos t) \Big|_{-\pi/2}^{\pi/2} = 0.$$

Thus the wire has mass  $m = 2k\pi$  with center of mass  $(\bar{x}, \bar{y}) = (\frac{4}{\pi}, 0)$ .  $\square$