

Math 6A Practice Problems II

Written by Victoria Kala
vtkala@math.ucsb.edu

SH 6432u Office Hours: R 12:30 – 1:30pm
Last updated 5/13/2016

1. Evaluate the line integral $\int_C xyz ds$ where C is the curve parametrized by $x = 2 \sin t, y = t, z = -2 \cos t, 0 \leq t \leq \pi$.
2. Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is given by the vector function $\mathbf{r}(t) = t\mathbf{i} + \sin t\mathbf{j} + \cos t\mathbf{k}, 0 \leq t \leq \pi$ and $\mathbf{F} = z\mathbf{i} + y\mathbf{j} - x\mathbf{k}$.
3. Determine whether or not \mathbf{F} is a conservative vector field. If it is, find a function f such that $\mathbf{F} = \nabla f$.
 - (a) $\mathbf{F}(x, y) = e^x \cos y\mathbf{i} + e^x \sin y\mathbf{j}$
 - (b) $\mathbf{F}(x, y) = (\ln y + 2xy^3)\mathbf{i} + \left(3x^2y^2 + \frac{x}{y}\right)\mathbf{j}$
4. Let $\mathbf{F}(x, y, z) = y^2 \cos z\mathbf{i} + 2xy \cos z\mathbf{j} - xy^2 \sin z\mathbf{k}$, C be the curve parametrized by $\mathbf{r}(t) = t^2\mathbf{i} + \sin t\mathbf{j} + t\mathbf{k}, 0 \leq t \leq \pi$.
 - (a) Show that \mathbf{F} is conservative. (Hint: use curl)
 - (b) Find a function f such that $\mathbf{F} = \nabla f$.
 - (c) Use (b) to calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the given curve C .
5. (a) Estimate the volume of the solid that lies below the surface $z = x + 2y^2$ and above the rectangle $R = [0, 2] \times [0, 4]$. Use a Riemann sum with $m = n = 2$ and choose the sample points to be the lower right corners.
 - (b) Use the midpoint rule to estimate the volume in (a).
 - (c) Calculate the exact volumes of the solid.
6. Evaluate the following integrals:
 - (a) $\int_1^4 \int_1^2 \left(\frac{x}{y} + \frac{y}{x}\right) dy dx$
 - (b) $\int_0^1 \int_0^1 \sqrt{s+t} ds dt$
7. Evaluate $\iint_D (x+y) dA$ where D is bounded by $y = \sqrt{x}, y = x^2$.
8. Evaluate the integral by reversing the order of integration:

$$\int_0^1 \int_{\arcsin y}^{\pi/2} \cos x \sqrt{1 + \cos^2 x} dx dy.$$

9. Evaluate $\iint_R (x + y) \, dA$ where R is the region that lies to the left of the y -axis between the circles $x^2 + y^2 = 1, x^2 + y^2 = 4$.
10. Verify Green's Theorem for $\int_C x^4 dx + xy dy$ where C is the triangular curve consisting of line segments from $(0, 0)$ to $(1, 0)$, $(1, 0)$ to $(0, 1)$, and $(0, 1)$ to $(0, 0)$ traversed in that order.
11. Evaluate $\int_C y^2 dx + 3xy dy$, where C is the boundary of the semiannular region D in the upper half plane between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$. (You may assume that C is positively oriented.)
12. Use a triple integral to find the volume of the solid bounded by the cylinder $y = x^2$ and the planes $z = 0, z = 4$, and $y = 9$.
13. Evaluate $\iiint_E xy dV$ where E is bounded by the parabolic cylinders $y = x^2$ and $x = y^2$, and the planes $z = 0$ and $z = x + y$.
14. Evaluate $\iiint_E (x^3 + xy^2) dV$ where E is the solid in the first octant that lies beneath the paraboloid $z = 1 - x^2 - y^2$.
15. Evaluate $\iiint_E e^z dV$ where E is enclosed by the paraboloid $z = 1 + x^2 + y^2$, the cylinder $x^2 + y^2 = 5$, and the xy -plane.
16. Evaluate $\iiint_E xyz dV$ where E lies between the spheres $\rho = 2$ and $\rho = 4$ and the cone $\phi = \frac{\pi}{3}$.