

Math 6A Practice Problems III

Written by Victoria Kala
vtkala@math.ucsb.edu

SH 6432u Office Hours: R 12:30 – 1:30pm
Last updated 6/1/2016

1. Use the transformation $x = 2u + v, y = u + 2v$ to evaluate the integral $\iint_R (x - 3y) dA$, where R is the triangular region with vertices $(0, 0), (2, 1), (1, 2)$.
2. Evaluate the surface integral $\iint_S x^2 y z dS$ where S is the part of the plane $z = 1 + 2x + 3y$ that lies above the rectangle $[0, 3] \times [0, 2]$.
3. Evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F}(x, y, z) = y\mathbf{i} + x\mathbf{j} + z\mathbf{k}$ and S is the boundary of the solid region E enclosed by the paraboloid $z = 1 - x^2 - y^2$ and the plane $z = 0$.
4. Use Stokes' Theorem to evaluate $\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = x^2 z^2 \mathbf{i} + y^2 z^2 \mathbf{j} + xyz \mathbf{k}$ and S is the part of the paraboloid $z = x^2 + y^2$ that lies inside the cylinder $x^2 + y^2 = 4$.
5. Consider the vector field $\mathbf{F}(x, y, z) = yz\mathbf{i} + 2xz\mathbf{j} + e^{xy}\mathbf{k}$, where C is circle $x^2 + y^2 = 16, z = 5$ oriented counterclockwise when viewed from above.
 - (a) Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$ by finding an appropriate parametrization vector $\mathbf{r}(t)$.
 - (b) Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$ using Stokes' Theorem, and verify it is equal to your solution in part (a).
6. Verify that the Divergence Theorem is true for the vector field $\mathbf{F}(x, y, z) = 3x\mathbf{i} + xy\mathbf{j} + 2xz\mathbf{k}$ where E is the cube bounded by the planes $x = 0, x = 1, y = 0, y = 1, z = 0, z = 1$.
Note: to verify the theorem is true you need to show that $\iint_S \mathbf{F} \cdot d\mathbf{S} = \iiint_E \operatorname{div} \mathbf{F} dV$; that is, you need to calculate both integrals and show they are equal.
7. Use the Divergence Theorem to calculate the surface integral $\iint \mathbf{F} \cdot d\mathbf{S}$; that is, calculate the flux of \mathbf{F} across S where $\mathbf{F}(x, y, z) = (\cos z + xy^2)\mathbf{i} + xe^{-z}\mathbf{j} + (\sin y + x^2 z)\mathbf{k}$, and S is the surface of the solid bounded by the paraboloid $z = x^2 + y^2$ and the plane $z = 4$.