Math 6A Practice Problems III

Written by Victoria Kala
vtkala@math.ucsb.edu
SH 6432u Office Hours: R 12:30 — 1:30pm
Last updated 6/4/2016

Answers



Detailed Solutions

1. Use the transformation z = 2u + v,y = u + 2v to evaluate the integral ffR(m — 3y)dA, where R is the
triangular region with vertices (0, 0), (2,1), (1,2).

Solution. The equations of the lines (edges) of the triangle are y = 2x,y = %x,y = 3 — z. Plug the
given transformations into these lines. When y = 2z:
u+20=22u+v) = u+2v=4u+2v = u=0.
When y = %x:
u+ 20 = %(2u+v) = u+2v:u+%v = ov=0.
When y =3 — z:
u+20=3-2u+v) = u+20=3-2u—v = 3Bu+3v=3 = utv=1

The region that defines u,v can be described as {(u,v) : 0 <u < 1,0 <v <1—u}, or {(u,v) :0<
v<1,0<u<1-—uw}

We now calculate the Jacobian:
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2. Evaluate the surface integral ffs x?yzdS where S is the part of the plane z = 1 + 2z + 3y that lies
above the rectangle [0, 3] x [0, 2].

Solution. [[qx*yzdS = [[,2*yz||n||dA. We need to find a parametrization r to find the normal n
and the region D. Start off with

r={(z,y,2).

We need to narrow this down to two variables. Our surface is the plane z = 1 + 2z + 3y, plug this for
z in our parametrization:

r(z,y) = (z,y,1+ 22 + 3y).

We are given that we are above the rectangle [0, 3] x [0, 2], which is 0 < z < 3,0 < y < 2. This is our
region D.

Now we calculate the normal vector n = r, x r, and take the magnitude:
ry, = (1,0,2)
r, =(0,1,3)




Therefore
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3. Evaluate ffs F-dS where F(x,y, 2z) = yi+zj+ zk and S is the boundary of the solid region E enclosed
by the paraboloid z = 1 — 22 — 2 and the plane z = 0.

Solution. You can also evaluate this surface integral using Divergence Theorem, but we will instead
calculate the surface integral directly.

We have two surfaces: the paraboloid, call it S1, and the plane z = 0, call it S3. We need to calculate
the surface integral for each surface then add them together at the end:

//SF~dS://SlF-dS+//SQF~dS.

We will assume that S has positive (outward) orientation. This means that S; has upward orientation
and S5 has downward orientation.

Recall that [[4F-dS = [[, F-ndA where n is the normal of our parametrization vector r.
S1: Start off with the parametrization
r=(z,y,z2)

We need to narrow this down to two variables. Our surface is the paraboloid z = 1 — 22 — 2, plug this
in for z in our parametrization:

I‘(x,y) - <£C,y, 1- 932 - y2>

The region D is the range of z, y, which we can find when the paraboloid intersects with the plane z = 0.
When z = 0, we have the circle 22 +y? = 1, which can be described as {(r,6) : 0 <r < 1,0 <0 < 27}.

Now we calculate the normal vector n = r, x r, and take the magnitude:

r, = (1,0, —2x)
r, = (0,1, -2y)
i j k
n=r,xr,=|1 0 —2z|=(2z,2y,1)
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Therefore
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Sa: We can use the parametrization r = (z,y,0) to find the normal vector, but we can also do so by
observation. Since S has downward orientation, the normal vector to z = 0 is n = —k = (0,0, —1).

Then
// F~dS:// <y,:z:,z>~(0,0,71>dA:// 0dA = 0.
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. Use Stokes’ Theorem to evaluate [[,curl F-dS where F = 222%i + y?2%j + xyzk and S is the part of
the paraboloid z = 22 + y? that lies inside the cylinder 22 + y? = 4.

Thus
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Solution. We need to find a parametrization r(¢) to evaluate [, o F-dr. The closed curve of intersection
of the paraboloid and cylinder is the circle 2 + y? = 4 at z = 4, which can be parametrized by

r(t) = (2cost,2sint, 4), 0<t<2x.

Then we have
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. Consider the vector field F(x,y, z) = yzi + 222j + *Yk, where C is circle 22 + y? = 16, z = 5 oriented
counterclockwise when viewed from above.

(a) Calculate |, o F - dr by finding an appropriate parametrization vector r(t).
Solution. The parametrization for the circle 2 + y? = 16,z = 5 is given by
r(t) = (4cost,4sint,5), 0<t<2m.

Then
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(b) Calculate [ F -dr using Stokes’ Theorem, and verify it is equal to your solution in part (a).

Solution. We need to evaluate ffs curl F - dS. The normal to the surface is the normal to z = 5,
which is n = k. The curl of F' is given by
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Then curl F - n = z, but on our surface z = 5, hence

//curlF-dS:// sz:// 5dA =542 = 80r.
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. Verify that the Divergence Theorem is true for the vector field F(x,y, z) = 3zi + zyj + 2x2k where F
is the cube bounded by the planes z =0,z =1,y =0,y =1,2 =0,z = 1.

Note: to verify the theorem is true you need to show that [[ F-dS = [[[, div FdV; that is, you need
to calculate both integrals and show they are equal.
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Solution. We will evaluate f f ¢ F - dS on each of the different faces of the cube then take their sum.
Onz=0,n=-i,D={(y,2):0<y<1,0<2z<1}and

//SF'dS://D—?mdAZ//DOdA:o.

Onz=1,n=1,D={(y,2):0<y<1,0<z<1} and

[[#as— [ sua= [[ saa=s

Ony=0,n=—j,D={(z,2):0<2<1,0<z<1} and
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Ony=0,n=jD={(x,2):0<2<1,0<z<1} and
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Onz=0,n=-k, D={(z,y):0<2<1,0<2<1} and

//SF.dS://D—szdA://DOdA:O_

Onz=1,n=k D={(z,y):0<2<1,0<2<1} and
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Therefore

Now we will evaluate [[[, div FdV where E = {(z,y,2) : 0 <2 < 1,0 <y < 1,0 < z < 1}. The
divergence of F' is given by
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Therefore
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7. Use the Divergence Theorem to calculate the surface integral [[ F -dS; that is, calculate the flux of F
across S where F(x,y,2) = (cos z + xy?)i + xe ?j + (siny + 2%2)k, and S is the surface of the solid
bounded by the paraboloid z = 2 + 2 and the plane z = 4.

Solution. We will evaluate [[[, div FdV where E = {(z,y,2) : 2 + 3y <2 <4} ={(r,0,2): 0<r <
2,0<0<2m,r?<z< 4}. The divergence of F is given by

div F = g(cosz +zy?) + g(:ve_z) + g(siny +a%2) = y? + 22
x

Jy 0z
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