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Detailed Solutions

1. Use the transformation x = 2u+ v, y = u+ 2v to evaluate the integral
∫∫
R

(x− 3y)dA, where R is the
triangular region with vertices (0, 0), (2, 1), (1, 2).

Solution. The equations of the lines (edges) of the triangle are y = 2x, y = 1
2x, y = 3 − x. Plug the

given transformations into these lines. When y = 2x:

u+ 2v = 2(2u+ v) ⇒ u+ 2v = 4u+ 2v ⇒ u = 0.

When y = 1
2x:

u+ 2v =
1

2
(2u+ v) ⇒ u+ 2v = u+

1

2
v ⇒ v = 0.

When y = 3− x:

u+ 2v = 3− (2u+ v) ⇒ u+ 2v = 3− 2u− v ⇒ 3u+ 3v = 3 ⇒ u+ v = 1.

The region that defines u, v can be described as {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 − u}, or {(u, v) : 0 ≤
v ≤ 1, 0 ≤ u ≤ 1− v}.
We now calculate the Jacobian:

J =

∣∣∣∣ ∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =

∣∣∣∣2 1
1 2

∣∣∣∣ = 4− 1 = 3.

Therefore∫∫
R

(x− 3y)dA =

∫ 1

0

∫ 1−u

0

[2u+ v − 3(u+ 2v)]|3|dvdu = 3

∫ 1

0

∫ 1−u

0

(−u− 5v)dvdu

= 3

∫ 1

0

(
−uv − 5

2
v2
) ∣∣∣1−u

v=0
du = 3

∫ 1

0

(
−u(1− u)− 5

2
(1− u)2

)
du

= 3

∫ 1

0

(
−3

2
u2 + 4u− 5

2

)
du = 3

(
−1

2
u3 + 2u2 − 5

2
u

) ∣∣∣1
0

= −3

2. Evaluate the surface integral
∫∫
S
x2yzdS where S is the part of the plane z = 1 + 2x + 3y that lies

above the rectangle [0, 3]× [0, 2].

Solution.
∫∫
S
x2yzdS =

∫∫
D
x2yz||n||dA. We need to find a parametrization r to find the normal n

and the region D. Start off with
r = 〈x, y, z〉.

We need to narrow this down to two variables. Our surface is the plane z = 1 + 2x+ 3y, plug this for
z in our parametrization:

r(x, y) = 〈x, y, 1 + 2x+ 3y〉.
We are given that we are above the rectangle [0, 3]× [0, 2], which is 0 ≤ x ≤ 3, 0 ≤ y ≤ 2. This is our
region D.

Now we calculate the normal vector n = rx × ry and take the magnitude:

rx = 〈1, 0, 2〉
ry = 〈0, 1, 3〉

n = rx × ry =

∣∣∣∣∣∣
i j k
1 0 2
0 1 3

∣∣∣∣∣∣ = 〈−2,−3, 1〉

||n|| =
√

(−2)2 + (−3)1 + 12 =
√

14.

2



Therefore∫∫
S

x2yzdS =

∫ 3

0

∫ 2

0

x2y(1 + 2x+ 3y)
√

14dydx =
√

14

∫ 3

0

∫ 2

0

(x2y + 2x3y + 3x2y2)dydx

=
√

14

∫ 3

0

(
x2y2

2
+ x3y2 + x3y3

) ∣∣∣2
y=0

dx =
√

14

∫ 3

0

(10x2 + 4x3)dx

=
√

14

(
10

3
x3 + x4

) ∣∣∣3
0

= 171
√

14.

3. Evaluate
∫∫
S
F ·dS where F(x, y, z) = yi+xj+zk and S is the boundary of the solid region E enclosed

by the paraboloid z = 1− x2 − y2 and the plane z = 0.

Solution. You can also evaluate this surface integral using Divergence Theorem, but we will instead
calculate the surface integral directly.

We have two surfaces: the paraboloid, call it S1, and the plane z = 0, call it S2. We need to calculate
the surface integral for each surface then add them together at the end:∫∫

S

F · dS =

∫∫
S1

F · dS +

∫∫
S2

F · dS.

We will assume that S has positive (outward) orientation. This means that S1 has upward orientation
and S2 has downward orientation.

Recall that
∫∫
S
F · dS =

∫∫
D
F · ndA where n is the normal of our parametrization vector r.

S1: Start off with the parametrization
r = 〈x, y, z〉

We need to narrow this down to two variables. Our surface is the paraboloid z = 1−x2− y2, plug this
in for z in our parametrization:

r(x, y) = 〈x, y, 1− x2 − y2〉.

The region D is the range of x, y, which we can find when the paraboloid intersects with the plane z = 0.
When z = 0, we have the circle x2 + y2 = 1, which can be described as {(r, θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}.
Now we calculate the normal vector n = rx × ry and take the magnitude:

rx = 〈1, 0,−2x〉
ry = 〈0, 1,−2y〉

n = rx × ry =

∣∣∣∣∣∣
i j k
1 0 −2x
0 1 −2y

∣∣∣∣∣∣ = 〈2x, 2y, 1〉

Therefore∫∫
S1

F · dS =

∫∫
D

〈y, x, z〉 · 〈2x, 2y, 1〉dA =

∫∫
D

(4xy + z)dA =

∫∫
D

(4xy + 1− x2 − y2)dA

=

∫ 2π

0

∫ 1

0

(4r2 cos θ sin θ + 1− r2)rdrdθ =

∫ 2π

0

∫ 1

0

(2r3 sin 2θ + r − r3)drdθ

=

∫ 2π

0

(
r4

2
sin 2θ +

r2

4
− r4

4

) ∣∣∣1
0
dθ =

∫ 2π

0

(
sin 2θ

2
+

1

4

)
dθ = −cos 2θ

4
+
θ

4

∣∣∣2π
0

=
π

2
.
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S2: We can use the parametrization r = 〈x, y, 0〉 to find the normal vector, but we can also do so by
observation. Since S2 has downward orientation, the normal vector to z = 0 is n = −k = 〈0, 0,−1〉.
Then ∫∫

S2

F · dS =

∫∫
D

〈y, x, z〉 · 〈0, 0,−1〉dA =

∫∫
D

0dA = 0.

Thus ∫∫
S

F · dS =

∫∫
S1

F · dS +

∫∫
S2

F · dS =
π

2
+ 0 =

π

2
.

4. Use Stokes’ Theorem to evaluate
∫∫
S

curl F · dS where F = x2z2i + y2z2j + xyzk and S is the part of
the paraboloid z = x2 + y2 that lies inside the cylinder x2 + y2 = 4.

Solution. We need to find a parametrization r(t) to evaluate
∫
C
F ·dr. The closed curve of intersection

of the paraboloid and cylinder is the circle x2 + y2 = 4 at z = 4, which can be parametrized by

r(t) = (2 cos t, 2 sin t, 4), 0 ≤ t ≤ 2π.

Then we have∫
C

F · dr =

∫ 2π

0

F(r(t)) · r′(t)dt =

∫ 2π

0

(64 cos2 t, 64 sin2 t, 16 cos t sin t) · (−2 sin t, 2 cos t, 0)dt

=

∫ 2π

0

(−128 sin t cos2 t+ 128 sin2 t cos t)dt = 128

(
1

3
cos3 t+

1

3
sin3 t

) ∣∣∣2π
0

= 0.

5. Consider the vector field F(x, y, z) = yzi + 2xzj + exyk, where C is circle x2 + y2 = 16, z = 5 oriented
counterclockwise when viewed from above.

(a) Calculate
∫
C
F · dr by finding an appropriate parametrization vector r(t).

Solution. The parametrization for the circle x2 + y2 = 16, z = 5 is given by

r(t) = (4 cos t, 4 sin t, 5), 0 ≤ t ≤ 2π.

Then∫
C

F · dr =

∫ 2π

0

F(r(t)) · r′(t)dt =

∫ 2π

0

(20 sin t, 40 cos t, e16 cos t sin t) · (−4 sin t, 4 cos t, 0)dt

=

∫ 2π

0

(−80 sin2 t+ 160 cos2 t)dt =

∫ 2π

0

(−40(1− cos 2t) + 80(1 + cos 2t))dt

=

∫ 2π

0

(40 + 120 cos 2t)dt = (40t+ 60 sin 2t)
∣∣∣2π
0

= 80π.

(b) Calculate
∫
C
F · dr using Stokes’ Theorem, and verify it is equal to your solution in part (a).

Solution. We need to evaluate
∫∫
S

curl F · dS. The normal to the surface is the normal to z = 5,
which is n = k. The curl of F is given by

curl F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

yz 2xz exy

∣∣∣∣∣∣ = i

∣∣∣∣ ∂
∂y

∂
∂z

2xz exy

∣∣∣∣− j

∣∣∣∣ ∂∂x ∂
∂z

yz exy

∣∣∣∣+ k

∣∣∣∣ ∂∂x ∂
∂y

yz 2xz

∣∣∣∣
= i(xexy − 2x)− j(yexy − y) + k(2z − z).
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Then curl F · n = z, but on our surface z = 5, hence∫∫
S

curl F · dS =

∫∫
D

zdA =

∫∫
D

5dA = 5 · π · 42 = 80π.

6. Verify that the Divergence Theorem is true for the vector field F(x, y, z) = 3xi + xyj + 2xzk where E
is the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
Note: to verify the theorem is true you need to show that

∫∫
S
F ·dS =

∫∫∫
E

div FdV ; that is, you need
to calculate both integrals and show they are equal.

Solution. We will evaluate
∫∫
S
F · dS on each of the different faces of the cube then take their sum.

On x = 0, n = −i, D = {(y, z) : 0 ≤ y ≤ 1, 0 ≤ z ≤ 1} and∫∫
S

F · dS =

∫∫
D

−3xdA =

∫∫
D

0dA = 0.

On x = 1, n = i, D = {(y, z) : 0 ≤ y ≤ 1, 0 ≤ z ≤ 1} and∫∫
S

F · dS =

∫∫
D

3xdA =

∫∫
D

3dA = 3.

On y = 0, n = −j, D = {(x, z) : 0 ≤ x ≤ 1, 0 ≤ z ≤ 1} and∫∫
S

F · dS =

∫∫
D

−xydA =

∫∫
D

0dA = 0.

On y = 0, n = j, D = {(x, z) : 0 ≤ x ≤ 1, 0 ≤ z ≤ 1} and∫∫
S

F · dS =

∫∫
D

xydA =

∫∫
D

xdA =

∫ 1

0

∫ 1

0

xdxdz =
1

2
.

On z = 0, n = −k, D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ z ≤ 1} and∫∫
S

F · dS =

∫∫
D

−2xzdA =

∫∫
D

0dA = 0.

On z = 1, n = k, D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ z ≤ 1} and∫∫
S

F · dS =

∫∫
D

2xzdA =

∫∫
D

2xdA =

∫ 1

0

∫ 1

0

2xdxdy = 1.

Therefore ∫∫
S

F · dS = 0 + 3 + 0 +
1

2
+ 0 + 1 =

9

2
.

Now we will evaluate
∫∫∫

E
div FdV where E = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}. The

divergence of F is given by

div F =
∂

∂x
(3x) +

∂

∂y
(xy) +

∂

∂z
(2xz) = 3 + x+ 2x = 3x+ 3.

Therefore∫∫∫
E

div FdV =

∫∫∫
E

(3x+ 3)dV =

∫ 1

0

∫ 1

0

∫ 1

0

(3x+ 3)dxdydz =

(
3

2
x2 + 3x

) ∣∣∣1
0

=
3

2
+ 3 =

9

2
.
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7. Use the Divergence Theorem to calculate the surface integral
∫∫

F · dS; that is, calculate the flux of F
across S where F(x, y, z) = (cos z + xy2)i + xe−zj + (sin y + x2z)k, and S is the surface of the solid
bounded by the paraboloid z = x2 + y2 and the plane z = 4.

Solution. We will evaluate
∫∫∫

E
div FdV where E = {(x, y, z) : x2 + y2 ≤ z ≤ 4} = {(r, θ, z) : 0 ≤ r ≤

2, 0 ≤ θ ≤ 2π, r2 ≤ z ≤ 4}. The divergence of F is given by

div F =
∂

∂x
(cos z + xy2) +

∂

∂y
(xe−z) +

∂

∂z
(sin y + x2z) = y2 + x2.

Then∫∫∫
E

div FdV =

∫∫∫
E

(x2 + y2)dV =

∫ 2π

0

∫ 2

0

∫ 4

r2
r2 · rdzdrdθ = 2π

∫ 2

0

∫ 2π

0

r3dzdr = 2π

∫ 2

0

r3z
∣∣∣z=4

z=r2
dr

= 2π

∫ 2

0

r3(4− r2)dr = 2π

∫ 2

0

(4r3 − r5)dr = 2π

(
r4 − 1

6
r6
) ∣∣∣2

0
= 2π

(
16− 64

6

)
=

32π

3
.
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