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Detailed Solutions

1. Evaluate the line integral
∫
C
xyzds where C is the curve parametrized by x = 2 sin t, y =

t, z = −2 cos t, 0 ≤ t ≤ π.

Solution. Since r(t) = 〈2 sin t, t,−2 cos t〉, r′(t) = 〈2 cos t, 1, 2 sin t〉 and

||r′(t)|| =
√

(2 cos t)2 + 1 + (2 sin t)2 =
√

5.

Then∫
C

xyzds =

∫ π

0

(2 sin t)(t)(−2 cos t)||r′(t)||dt = −4
√

5

∫ π

0

t sin t cos tdt = −2
√

5

∫ π

0

t sin 2tdt

= −2
√

5

(
−1

2
t cos 2t+

1

4
sin 2t

) ∣∣∣π
0

=
√

5π.

We used integration by parts to evaluate the integral.

2. Evaluate the line integral
∫
C
F · dr where C is given by the vector function r(t) = ti+ sin tj+

cos tk, 0 ≤ t ≤ π and F = zi + yj− xk.

Solution. F(r(t)) = 〈cos t, sin t,−t〉 and r(t) = 〈1, cos t,− sin t〉. Therefore∫
C

F · dr =

∫ π

0

F(r(t)) · r′(t)dt =

∫ π

0

〈cos t, sin t,−t〉 · 〈1, cos t,− sin t〉dt

=

∫ π

0

(cos t+ sin t cos t+ t sin t) dt =

∫ π

0

(
cos t+

1

2
sin 2t+ t sin t

)
dt

= sin t− 1

4
cos 2t− t cos t+ sin t

∣∣∣π
0

= π.

We used integrating by parts to evaluate the integral
∫
t sin tdt.

3. Determine whether or not F is a conservative vector field. If it is, find a function f such that
F = ∇f .

(a) F(x, y) = ex cos yi + ex sin yj

Solution. P = ex cos y and Q = ex sin y. Then

∂P

∂y
= −ex sin y and

∂Q

∂x
ex sin y.

Since ∂Q
∂x 6=

∂P
∂y , F is not conservative.

(b) F(x, y) = (ln y + 2xy3)i +

(
3x2y2 +

x

y

)
j

2



Solution. P = ln y + 2xy3 and Q = 3x2y2 + x
y . Then

∂P

∂y
=

1

y
+ 6xy2, and

∂Q

∂x
= 6xy2 +

1

y
.

Since ∂Q
∂x = ∂P

∂y , F is conservative and there exists an f such that ∇f = F.

We wish to find a function f such that 〈fx, fy〉 = 〈ln y + 2xy3, 3x2y2 + x
y 〉:

fx = ln y + 2xy3 ⇒ f = x ln y + x2y3 + g(y)

fy = 3x2y2 +
x

y
⇒ f = x2y3 + x ln y + h(x).

Therefore f = x2y3 + x ln y + C.

4. Let F(x, y, z) = y2 cos zi + 2xy cos zj − xy2 sin zk, C be the curve parametrized by r(t) =
t2i + sin tj + tk, 0 ≤ t ≤ π.

(a) Show that F is conservative. (Hint: use curl)

Solution. We need to show curl(F) = 0:

curl(F) =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

y2 cos z 2xy cos z −xy2 sin z

∣∣∣∣∣∣
= i

∣∣∣∣ ∂
∂y

∂
∂z

2xy cos z −xy2 sin z

∣∣∣∣− j

∣∣∣∣ ∂
∂x

∂
∂z

y2 cos z −xy2 sin z

∣∣∣∣+ k

∣∣∣∣ ∂
∂x

∂
∂y

y2 cos z 2xy cos z

∣∣∣∣
= i

(
∂

∂y
(−xy2 sin z)− ∂

∂z
(2xy cos z)

)
− j

(
∂

∂x
(−xy2 sin z)− ∂

∂z
(y2 cos z)

)
+ k

(
∂

∂x
(2xy cos z)− ∂

∂y
(y2 cos z)

)
= (−2xy sin z + 2xy sin z)i− (−y2 sin z + y2 sin z)j + (2y cos z − 2y cos z)k

= 0.

Therefore F is conservative.

(b) Find a function f such that F = ∇f .

Solution. We need to find an f such that 〈fx, fy, fz〉 = 〈y2 cos z, 2xy cos z,−xy2 sin z〉:

fx = y2 cos z ⇒ f = xy2 cos z + g(y, z)

fy = 2xy cos z ⇒ f = xy2 cos z + h(x, z)

fz = −xy2 sin z ⇒ f = xy2 cos z + `(x, y)

Therefore f = xy2 cos z + C.

(c) Use (b) to calculate
∫
C
F · dr along the given curve C.
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Solution.∫
C

F · dr =

∫
C

∇f · dr = f(r(π))− f(r(0) = f(π2, 1, π)− f(0, 0, 0) = 0.

5. (a) Estimate the volume of the solid that lies below the surface z = x+ 2y2 and above the
rectangle R = [0, 2]× [0, 4]. Use a Riemann sum with m = n = 2 and choose the sample
points to be the lower right corners.

Solution. ∆x = 2−0
2 = 1 and ∆y = 4−0

2 , therefore ∆A = ∆x∆y = 2. The lower
righthand corners of each rectangle are (1, 0), (1, 2), (2, 0), (2, 2). Let z = f(x, y). Then∫∫

f(x, y)dA ≈ (f(1, 0) + f(1, 2) + f(2, 0) + f(2, 2)) ∆A = (1 + 9 + 2 + 10) · 2 = 44.

(b) Use the midpoint rule to estimate the volume in (a).

Solution. We did not change the division of our rectangles, so ∆A = 2. The midpoints
of each rectangle are ( 1

2 , 1), ( 1
2 , 3), ( 3

2 , 1), ( 3
2 , 3). Then∫∫

f(x, y)dA ≈
(
f

(
1

2
, 1

)
+ f

(
1

2
, 3

)
+ f

(
3

2
, 1

)
+ f

(
3

2
, 3

))
∆A

=

(
1

2
+ 2 +

1

2
+ 18 +

3

2
+ 2 +

3

2
+ 18

)
· 2 = 88.

(c) Calculate the exact volumes of the solid.

Solution.∫ 2

0

∫ 4

0

(x+ 2y2)dydx =

∫ 2

0

(
xy +

2

3
y3
) ∣∣∣4

0
dx =

∫ 2

0

(
4x+

128

3

)
dx = 2x2 +

128

3
x
∣∣∣2
0

=
280

3

6. Evaluate the following integrals:

(a)

∫ 4

1

∫ 2

1

(
x

y
+
y

x

)
dydx

Solution.∫ 4

1

∫ 2

1

(
x

y
+
y

x

)
dydx =

∫ 4

1

(
x ln y +

y2

2x

) ∣∣∣2
y=1

dx =

∫ 4

1

(
x ln 2 +

2

x
− 1

2x

)
dx

=
1

2
x2 ln 2 + 2 lnx− 1

2
lnx
∣∣∣4
1

=
11

2
ln 2− 3

2
ln 4 =

21

2
ln 2
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(b)

∫ 1

0

∫ 1

0

√
s+ t dsdt

Solution.∫ 1

0

∫ 1

0

(s+ t)1/2 dsdt =

∫ 1

0

2

3
(s+ t)3/2

∣∣∣1
0
dt =

2

3

∫ 1

0

(
(1 + t)3/2 − t3/2

)
dt

=
2

3

(
2

5
(1 + t)5/2 − 2

5
t5/2

) ∣∣∣1
0

=
8

15
(2
√

2− 1)

7. Evaluate
∫∫
D

(x+ y) dA where D is bounded by y =
√
x, y = x2.

Solution. The region described is D = {(x, y) : 0 ≤ x ≤ 1, x2 ≤ y ≤
√
x}.∫∫

D

(x+ y)dA =

∫ 1

0

∫ √x
x2

(x+ y)dydx =

∫ 1

0

(
xy +

y2

2

) ∣∣∣√x
x2
dx =

∫ 1

0

(
x3/2 +

x

2
− x3 − x4

2

)
dx

=
2

5
x5/2 +

x2

4
− x4

4
− x5

5

∣∣∣1
0

=
3

10

8. Evaluate the integral by reversing the order of integration:∫ 1

0

∫ π/2

arcsin y

cosx
√

1 + cos2 x dxdy.

Solution. The region described in the integral above is equivalent to 0 ≤ x ≤ π
2 , 0 ≤ y ≤ sinx:∫ π/2

0

∫ sin x

0

cosx
√

1 + cos2 x dydx =

∫ π/2

0

cosx
√

1 + cos2 x · y
∣∣∣sin x
0

dx

=

∫ π/2

0

sinx cosx
√

1 + cos2 xdx, let u = 1 + cos2 x

= −1

2

∫ 1

2

√
udu = −1

2
· 2

3
u3/2

∣∣∣1
2

=
1

3

(
2
√

2− 1
)

9. Evaluate
∫∫
R

(x + y) dA where R is the region that lies to the left of the y-axis between the
circles x2 + y2 = 1, x2 + y2 = 4.
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Solution. The region described in polar coordinates is R = {(r, θ) : 1 ≤ r ≤ 2, π2 ≤ θ ≤
3π
2 }.∫∫

R

(x+ y)dA =

∫ 3π/2

π/2

∫ 2

1

(r cos θ + r sin θ)rdrdθ =

∫ 3π/2

π/2

∫ 2

1

(cos θ + sin θ)r2drdθ

=

∫ 3π/2

π/2

(cos θ + sin θ) · r
3

3

∣∣∣2
1
dθ =

7

3

∫ 3π/2

π/2

(cos θ + sin θ)dθ

=
7

3
(sin θ − cos θ)

∣∣∣3π/2
π/2

= −14

3

10. Verify Green’s Theorem for
∫
C
x4dx+ xydy where C is the triangular curve consisting of line

segments from (0, 0) to (1, 0), (1, 0), to (0, 1), and (0, 1) to (0, 0) traversed in that order.

Solution. We need to verify
∫
C
F · dr =

∫∫
D

(
∂Q
∂x −

∂P
∂y

)
dA. We need to calculate both the

left integral and the right integral and show they are equal.

For the left integral: We need to break up our triangle into three different sections. Let C1

be the side of the triangle from (0, 0) to (1, 0), C2 be the side of the triangle from (1, 0) to
(0, 1), and C3 be the side of the triangle from (0, 1) to (0, 0). Then

∫
C

=
∫
C1

+
∫
C2

+
∫
C3

.

C1 is parametrized by r(t) = 〈t, 0〉, 0 ≤ t ≤ 1. Then∫
C1

F · dr =

∫ 1

0

F (r(t)) · r′(t)dt =

∫ 1

0

t4dt+ t · 0 · 0dt =

∫ 1

0

t4dt =
1

5
t5
∣∣∣1
0

=
1

5
.

C2 is parametrized by r(t) = 〈1− t, t〉, 0 ≤ t ≤ 1. Then∫
C2

F · dr =

∫ 1

0

F (r(t)) · r′(t)dt =

∫ 1

0

(1− t)4(−dt) + (1− t)tdt =

∫ 1

0

(
−(1− t)4 + t− t2

)
dt

=
1

5
(1− t)5 +

1

2
t2 − 1

3
t3
∣∣∣1
0

=
1

2
− 1

3
− 1

5

C3 is parametrized by r(t) = 〈0, 1− t〉, 0 ≤ t ≤ 1. Then∫
C3

F · dr =

∫ 1

0

F (r(t)) · r′(t)dt =

∫ 1

0

0(−dt) + 0 · (1− t)(−dt) = 0.

Therefore ∫
C

F · dr =
1

5
+

1

2
− 1

3
− 1

5
+ 0 =

1

6
.

Clearly this method is tedious. Now we will apply Green’s Theorem. The triangle can be
described as D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x}. Then∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫ 1

0

∫ 1−x

0

(
∂

∂x
(xy)− ∂

∂y
(x4)

)
dydx =

∫ 1

0

∫ 1−x

0

ydydx

=

∫ 1

0

y2

2

∣∣∣1−x
0

dx =

∫ 1

0

(1− x)2

2
dx = − (1− x)3

6

∣∣∣1
0

=
1

6
.

Our two calculations are equal to each other, thus the theorem is verified.
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11. Evaluate
∫
C
y2dx+3xydy, where C is the boundary of the semiannular region D in the upper

half plane between the circles x2 + y2 = 1 and x2 + y2 = 4. (You may assume that C is
positively oriented.)

Solution. D is the region {(x, y) : 1 ≤ x2 + y2 ≤ 4} = {(r, θ) : 1 ≤ r ≤ 2, 0 ≤ θ ≤ π}. Using
Green’s Theorem, we have∫

C

y2dx+ 3xydy = −
∫∫

D

(
∂

∂x
(3xy)− ∂

∂y
(y2)

)
dA =

∫∫
D

(3y − 2y)) dA =

∫∫
D

ydA

=

∫ π

0

∫ 2

1

r sin θ · rdrdθ =

∫ π

0

sin θdθ

∫ 2

1

r2dr = (− cos θ)
∣∣∣π
0
· 1

3
r3
∣∣∣2
1

=
14

3

12. Use a triple integral to find the volume of the solid bounded by the cylinder y = x2 and the
planes z = 0, z = 4, and y = 9.

Solution. The solid can be described as E = {(x, y, z) : −3 ≤ x ≤ 3, x2 ≤ x ≤ 9, 0 ≤ z ≤ 4}.
Therefore

V =

∫∫∫
E

dV =

∫ 3

−3

∫ 9

x2

∫ 4

0

dzdydx =

∫ 3

−3

∫ 9

x2

z
∣∣∣4
0
dydx = 4

∫ 3

−3

∫ 9

x2

dydx = 4

∫ 3

−3
y
∣∣∣9
x2
dx

= 4

∫ 3

−3
(9− x2)dx = 4

(
9x− x3

3

) ∣∣∣3
−3

= 144

13. Evaluate
∫∫∫

E
xydV where E is bounded by the parabolic cylinders y = x2 and x = y2, and

the planes z = 0 and z = x+ y.

Solution. The solid can be described as E = {(x, y, z) : 0 ≤ x ≤ 1, x2 ≤ y ≤
√
x, 0 ≤ z ≤

x+ y}. Then∫∫∫
E

xydV =

∫ 1

0

∫ √x
x2

∫ x+y

0

xydzdydx =

∫ 1

0

∫ √x
x2

xyz
∣∣∣x+y
z=0

dydx =

∫ 1

0

∫ √x
x2

(x2y + xy2)dydx

=

∫ 1

0

(
x2y2

2
+
xy3

3

) ∣∣∣√x
x2
dx =

∫ 1

0

(
x3

2
+
x5/2

3
− x6

2
− x7

3

)
dx

=
x4

8
+

2x7/2

21
− x7

14
− x8

24

∣∣∣1
0

=
1

8
+

2

21
− 1

14
− 1

24

14. Evaluate
∫∫∫

E
(x3 + xy2)dV where E is the solid in the first octant that lies beneath the

paraboloid z = 1− x2 − y2.
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Solution. The solid can be described in cylindrical coordinates as E = {(r, θ, z) : 0 ≤ r ≤
1, 0 ≤ θ ≤ π

2 , 0 ≤ z ≤ 1− r2}. Since x3 + xy2 = x(x2 + y2) = r cos θ · r2, then∫∫∫
E

(x3 + xy2)dV =

∫ π/2

0

∫ 1

0

∫ 1−r2

0

r3 cos θ · rdzdrdθ =

∫ π/2

0

∫ 1

0

r4 cos θ · z
∣∣∣1−r2
0

drdθ

=

∫ π/2

0

∫ 1

0

r4(1− r2) cos θdrdθ =

∫ π/2

0

∫ 1

0

(r4 − r6) cos θdrdθ

=

∫ π/2

0

(
r5

5
− r7

7

) ∣∣∣1
0

cos θdθ =
2

35
sin θ

∣∣∣π/2
0

=
2

35

15. Evaluate
∫∫∫

E
ezdV where E is enclosed by the paraboloid z = 1 + x2 + y2, the cylinder

x2 + y2 = 5, and the xy-plane.

Solution. The solid can be described in cylindrical coordinates as E = {(r, θ, z) : 0 ≤ r ≤√
5, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1 + r2}.∫∫∫
E

ezdV =

∫ 2π

0

∫ √5

0

∫ 1+r2

0

ezrdzdrdθ =

∫ 2π

0

∫ √5

0

rez
∣∣∣1+r2
z=0

drdθ

=

∫ 2π

0

∫ √5

0

r(e1+r
2

− 1)drdθ = 2π

(∫ 2π

0

re1+r
2

dr −
∫ 2π

0

rdr

)
, let u = 1 + r2

= 2π

(
1

2

∫ 6

1

eudu− r2

2

∣∣∣√5

0

)
= π

(
eu
∣∣∣6
1
− 5

)
= π(e6 − e− 5)

16. Evaluate
∫∫∫

E
xyzdV where E lies between the spheres ρ = 2 and ρ = 4 and the cone φ = π

3 .

Solution. The solid can be described in polar coordinates as E = {(ρ, θ, φ) : 2 ≤ ρ ≤ 4, 0 ≤
θ ≤ 2π, 0 ≤ φ ≤ π

3 }. Then∫∫∫
E

xyzdV =

∫ 4

2

∫ 2π

0

∫ π/3

0

(ρ cos θ sinφ)(ρ sin θ sinφ)(ρ cosφ) · ρ2 sinφdρdθdφ

=

∫ 4

2

ρ5dρ

∫ 2π

0

sin θ cos θdθ

∫ π/3

0

sin3 φ cosφdφ

=
ρ6

6

∣∣∣4
2
· 1

2
sin2 θ

∣∣∣2π
0
· 1

4
sin4 φ

∣∣∣π/3
0

= 0
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