
Surface Area, Surface Integral Examples
Written by Victoria Kala

vtkala@math.ucsb.edu
SH 6432u Office Hours: R 12:30 − 1:30pm

Last updated 6/1/2016

The first example demonstrates how to find the surface area of a given surface. The second example demon-
strates how to find the surface integral of a given vector field over a surface.

1. Find the surface area of the portion of the sphere of radius 4 that lies inside the cylinder x2 + y2 = 12
and above the xy-plane.

Solution. We need to evaluate

A =

∫∫
D

||ru × rv||dA.

We are asked to find the surface area of a portion of the sphere, this is the surface we need to
parametrize. The parametrization vector is given by

r(x, y, z) = 〈x, y, z〉.

In spherical coordinates, x = ρ cos θ sinφ, y = ρ sin θ sinφ, z = ρ cosφ. Plug these into our parametriza-
tion vector:

r(ρ, θ, φ) = 〈ρ cos θ sinφ, ρ sin θ sinφ, ρ cosφ〉.

Right now our parametrization is a function of three variables, we need to narrow it down to two
variables. We are given one more piece of information about the sphere: it has radius 4. This means
ρ = 4. Plug this in:

r(θ, φ) = 〈4 cos θ sinφ, 4 sin θ sinφ, 4 cosφ〉.

Now we need to find the range of θ and φ. Since we are going all the way around the cylinder and
sphere, 0 ≤ θ ≤ 2π. To find the range of φ, we need to find where the cylinder and sphere intersect.
The equation of the sphere is

x2 + y2 + z2 = 16.

The equation of the cylinder is x2 + y2 = 12. Plug this into the equation of the sphere:

12 + z2 = 16 ⇒ z2 = 4 ⇒ z = 2.

In spherical coordinates, z = ρ cosφ, but we know that ρ = 4, so z = 4 cosφ. Therefore

z = 2 ⇒ 4 cosφ = 2 ⇒ cosφ =
1

2
⇒ φ =

π

3
,

and we have that 0 ≤ φ ≤ π
3 . Therefore

A =

∫ 2π

0

∫ π/3

0

||rθ × rφ||dφdθ.

Now find rθ × rφ:

rθ = 〈−4 sin θ sinφ, 4 cos θ sinφ, 0〉
rφ = 〈4 cos θ cosφ, 4 sin θ cosφ,−4 sinφ〉

rθ × rφ =

∣∣∣∣∣∣
i j k

−4 sin θ sinφ 4 cos θ sinφ 0
4 cos θ cosφ 4 sin θ cosφ −4 sinφ

∣∣∣∣∣∣ = 〈−16 cos θ sin2 φ,−16 sin θ sin2 φ,−16 sinφ cosφ〉
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Find ||rθ × rφ||:

||rθ × rφ|| =
√

(−16 cos θ sin2 φ)2 + (−16 sin θ sin2 φ)2 + (−16 sinφ cosφ)2 = ... = 16 sinφ

Therefore

A =

∫ 2π

0

∫ π/3

0

||rθ × rφ||dφdθ =

∫ 2π

0

∫ π/3

0

16 sinφdφdθ = 2π(−16 cosφ)
∣∣∣π/3
0

= 16π.

2. Set up the integral
∫∫
S
F·dS where F = yj−zk and S is the surface given by the paraboloid y = x2+z2

between y = 0 and y = 1. Assume S has positive orientation.

Solution. We need to evaluate ∫∫
S

F · dS =

∫∫
D

F · ndA

where D the range of the parameters in dA.

We need to parametrize the surface. The parametrization vector is given by

r(x, y, z) = 〈x, y, z〉.

We need to narrow this down to dependence on two variables. We are given that the surface is
y = x2 + z2. Plug this into the paramterization vector:

r(x, z) = 〈x, x2 + z2, z〉.

Find rx × rz:

rx = 〈1, 2x, 0〉
rz = 〈0, 2z, 1〉

rx × rz =

∣∣∣∣∣∣
i j k
1 2x 0
0 2z 1

∣∣∣∣∣∣ = 〈2x,−1, 2x〉.

Then∫∫
D

F · ndA =

∫∫
D

〈0, y,−z〉 · 〈2x,−1, 2z〉dA =

∫∫
D

(−y − 2z2)dA =

∫∫
D

(−(x2 + z2)− 2z2)dA

Note that we have to plug in y into the integral since we will be integrating over x and z.

We can certainly find bounds for this integral in Cartesian coordinates, but it will be simpler to switch
our integral into cylindrical coordinates. In cylindrical coordinates

x = r cos θ, z = r sin θ, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

To get the bounds for r, use y = x2 + z2 and y = 1. Therefore∫∫
D

F · ndA =

∫∫
D

(−(x2 + z2)− 2z2)dA =

∫ 2π

0

∫ 1

0

(−r2 − 2r2 sin2 θ)drdθ.
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