

Math 6B: PDE “Quiz” Solution

May 28, 2016

1. Vibration of a stretched string with fixed ends: The ends of a stretched string of length $L = 1$ are fixed at $x = 0$ and $x = 1$. The string is set to vibrate from rest by releasing it from an initial triangular shape model by the function

$$f(x) = \begin{cases} \frac{3}{10}x, & 0 \leq x \leq \frac{1}{3} \\ \frac{3(1-x)}{20}, & \frac{1}{3} \leq x \leq 1. \end{cases}$$

Determine the subsequent motion of the string (find $u(x, t)$) given that $c = 1/\pi$.

Hint: You need to solve the system $\frac{\partial^2 u}{\partial t^2} = \frac{1}{\pi^2} \frac{\partial^2 u}{\partial x^2}$, $u(0, t) = u(1, t) = 0$, $u(x, 0) = f(x)$, $u_t(x, 0) = 0$, $0 < x < 1$, $t > 0$.

Solution. Given $L = 1$, $c = \frac{1}{\pi}$, the general solution to the equation is

$$u(x, t) = \sum_{n=1}^{\infty} \sin(n\pi x) (b_n \cos \lambda_n t + b_n^* \sin \lambda_n t)$$

where

$$\begin{aligned} b_n &= 2 \int_0^1 f(x) \sin n\pi x dx \\ b_n^* &= \frac{2}{n} \int_0^1 g(x) \sin n\pi x dx \\ \lambda_n &= n, \quad n = 1, 2, \dots \end{aligned}$$

Find b_n (use integration by parts):

$$\begin{aligned} b_n &= 2 \left[\int_0^{1/3} \frac{3}{10}x \sin(n\pi x) dx + \int_{1/3}^1 \frac{3(1-x)}{20} \sin(n\pi x) dx \right] \\ &= 2 \left[\left(-\frac{1}{n\pi} \frac{3}{10} x \cos(n\pi x) + \frac{1}{(n\pi)^2} \frac{3}{10} \sin(n\pi x) \right) \Big|_0^{1/3} + \left(-\frac{1}{n\pi} \frac{3(1-x)}{20} \cos(n\pi x) - \frac{1}{(n\pi)^2} \frac{3}{20} \sin(n\pi x) \right) \Big|_{1/3}^1 \right] \\ &= \frac{9}{10(n\pi)^2} \sin\left(\frac{n\pi}{3}\right) \end{aligned}$$

Find b_n^* :

$$b_n^* = \frac{2}{n} \int_0^1 0 \cdot \sin(n\pi x) dx = 0.$$

Substitute into the general solution:

$$u(x, t) = \sum_{n=1}^{\infty} \frac{9}{10(n\pi)^2} \sin\left(\frac{n\pi}{3}\right) \sin(n\pi x) \cos nt.$$

□

2. A thin bar of length π units is placed in boiling water (temperature 100°C). After reaching 100°C throughout, the bar is removed from the boiling water. With the lateral sides kept insulated, suddenly, at time $t = 0$, the ends are immersed in a medium with constant freezing temperature 0°C . Taking $c = 1$, find the temperature $u(x, t)$ for $t > 0$.

Hint: You need to solve the system $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, $u(0, t) = u(\pi, t) = 0$, $u(x, 0) = 100$, $0 < x < \pi$, $t > 0$.

Solution. Given $L = \pi$, $c = 1$, the general solution to the equation is

$$u(x, t) = \sum_{n=1}^{\infty} b_n e^{-\lambda_n^2 t} \sin(nx)$$

where

$$\begin{aligned} b_n &= \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx \\ \lambda_n &= n. \end{aligned}$$

Find b_n :

$$b_n = \frac{2}{\pi} \int_0^{\pi} 100 \sin(nx) dx = \frac{2}{\pi} \cdot 100 \cdot \frac{(-\cos(nx))}{n} \Big|_0^{\pi} = \frac{200}{\pi} \cdot \frac{1 - \cos(n\pi)}{n}$$

When n is odd, $\cos(n\pi) = -1$ and $b_n = \frac{400}{n\pi}$. When n is even, $\cos(n\pi) = 1$ and $b_n = 0$. Substitute into the general solution:

$$u(x, t) = \sum_{n \text{ odd}} \frac{400}{n\pi} e^{-n^2 t} \sin(nx).$$

We can do better. Since n is odd, $n = 2k + 1$ for $k = 0, 1, 2, \dots$. Substitute this into our solution:

$$u(x, t) = \sum_{k=0}^{\infty} \frac{400}{(2k+1)\pi} e^{-(2k+1)^2 t} \sin((2k+1)x).$$

□