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Detailed Solutions

1. Find the radius and interval convergence of the series:

(a)

>

n=1

Solution. This is a power series about a = 0. Using the Ratio Test with a,, = %, we have
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Since our limit is always less than 1, the radius of convergence is R = oo and the interval of

convergence is [ = (—00, 00). O
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Solution. This is a power series about a = 0. Using the Ratio test with a, = (—1)"%, we
have
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“L’H” denotes where we used L’Hépital’s Rule to evaluate the limit. We have |z| < 4, hence the
radius of convergence is R = 4. We need to test the endpoints at x = —4,z = 4.

When xz = —4:
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Since n > Inn (graph it), then ﬁ > % The sum Z% diverges, therefore by the Comparison

Test, > ﬁ must also diverge. We do not include z = —4 in the interval of convergence.
When z = 4:
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The sequence b,, = ﬁ is decreasing and lim,,_,., b, = 0. Thus by the Alternating Series test,
the series > (l_nl'r)L" converges. We include z = 4 in the interval of convergence.
Therefore the interval of convergence is (—4, 4]. O
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Solution. This is a power series about a = 3 since (22 — 1)” = [2(z — 3)]". Using the ratio test
with a, = n!(2z — 1), we have

(n+1)!1(2z — 1)+t
nl(2z — 1)»

An+41
Qn

lim

n—roo

= lim

= lim (n+1)|2z — 1] = .
n— 00 n—oo

The limit is never less than 1, so the radius of convergence is R = 0. Therefore the interval of
convergence is just the point {%} O
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Z 2" to find the power series of the following functions:

2. Use the power series =
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3. Find the Taylor series for f(z) = - centered at a = —3
Solution. The Taylor series of f(z) about a = —3 is
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Find a pattern for the nth derivative:
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Evaluate the nth derivative at a = —3
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Therefore the Taylor series about a = —3 is
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4. Evaluate the indefinite integral as an infinite series:

(a) / e dx

Solution. Since e* = ZZO:() L,
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Solution. Since cosz =y " (—1)" %
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6. Find the sum of the series:
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Solution. Rewrite the series as
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Solution. We can write the sum as the series
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7. Find the Fourier series of the function:
(a) f(z)=1—sinz+3cos2zx +sin’(3z), —r<z <7

Solution. A Fourier series is a sum of cosine and sine terms. We already have cosine and sine
terms here, we just need to rewrite sin?(3x) and we are done:

1
f(z) =1 —sinz + 3cos 2z + sin®(3z) = 1 — sinz + 3 cos 2z + 5(1 — cos 6x)

3 1
= — —sinz + 3cos2x — 500863;

(b) f(z)=a? —p<az<p

Solution. f is even so it only has cosine terms in its Fourier series:

fl@)=ao+ i ay, Cos (%x) .
n=1

Since we are on the interval —p < x < p, L = p. Find ag and a,, (use integration by parts for a,,):
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Thus




(c) f(z) =xcoszif —-F <x <%
Hint: This is a tough one. Use the fact that the function is odd. Also use the formula
cos(a) sin(B) = 3 [sin(a + B) + sin(a — B)].

Solution. f is odd, so it only has sine terms in its Fourier series:

flx) = i by, cos (%x) .

Since we are on the interval —Z < x < Z, L = Z. Find b,:
2 2 2
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by, = —/ f(x)sin (nﬂ > dx 7/ x cos x sin(2nx)dx
2 T Jo

Use the given formula on cos z sin(2nx), then evaluate using integration by parts:
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8. Find the cosine and sine series of the function f(z) =z, 0 <z < 1.

Solution. We are only given half of our periodic function.

For the cosine series, we need to find the even expansion of f(z) = « which is f(z) = |z| for =1 < = < 1.
In this case, L = 1. The cosine series is

f(z)=ao+ Z ap, cos(nmx)

n=1
where
1 [k ! 211
a = 7 /0 f(z)dx /0 vde = —| =3
2 [* ! z 1 1
ap = E/o f(z) cos(nma)dx = 2/0 x cos(nmrz)dr = 2 [mr sin(nmzx) + o cos(mm:)] ‘0
2
= ()2 (cos(nm) —1).
When n is even, cos(nm) = 1 which implies that a,, = 0. When n is odd, cos(nt) = —1, which implies
that
—4
ap, = .
(nm)?



Thus the cosine series is

[M]8

flz) = % + Z (T;:l)Q cos(nmwz) = % + W cos(2k + 1)z.
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For the sine series, we need to find the odd expansion of f(z) which is f(z) =z for -1 <z < 1. In
this case, L = 1. The sine series is

flx) = Z by, sin(nmzx)

where

1

by = E/OL f(z)sin(nrx) = 2/01 xsin(nrr)dr = 2 {n: cos(nmx) + ( ! 5 sin(mrx)} ‘

nm) 0
2 2 2
- _ = :77717’7,:77177,4»1
—cos(nm) = ——(-1)" = —(-1)
Thus the sine series is
— 2
f(z) = n; E(—l)""'1 sin(nmx).
O
9. Find the Fourier transforms of the following functions:
1, |z|<a
a x) =
(&) f(@) {0, || > a.
Solution.
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Note: we used the equation % = sinz to simplify. O
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e x>0
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(b) flz) = {
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A 1 0 X oo . 1 [e’e) )
W)= —— Oe_“”dx—&—/ e_me_“””dx} = —/ e~ (Hw)z gy
fw) V2T [/oo 0 2w Jo

1 67(1+iw)93

00 1 i 67(1+iw)x 1 1
= = 11m -
Vor —(14iw)lo  2r <x%oo —(14iw) or —(1+iw))
1 1 1 1—w

T Varltiw Varltwr

Note: we rationalized the denominator in the last line by multiplying the fraction by 1 — iw. [
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1—2% |z| <1,
0, otherwise.
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Solution. Use integration by parts to evaluate the integral.
rp-t , 1 o o0 , 1 1 o
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Solve the system uy = 16u4,,0 < 2 < 1,¢ > 0;u(0,t) = u(1,t) = 0;u(x,0) = f(z),u(x,0) = 0 where

fay=32 0
2

<z<g
2(1 — ), <z<l1.

Solution. This is a wave equation system. We are given c =4, L =1, g(z) = 0, and f(z) as described
above. The general solution is

u(x,t) = Z sin(nmx) (by, cos At + by, sin A,t)
n=1

where

by, = 2/1 f(x)sin(nrx)dx
0
9 1

*

= g(z) sin(nrz)dx

dnm J,
Ap = 4nm.
b = 0 since g(z) = 0. Find b, (use integration by parts):

1/2 1
b, =2 [/ 2z sin(nma)dx —|—/ 21 —x) sin(nmc)dx]
0 1/2

=2 K_zx cos(nmz) + 2 sin(nms)) ‘1/2 + (—M cos(nmx) — 2 sin(nmﬁ)> ‘1 }

nmw (nm)2 0 nm (nm)?
8§ . /nm
- (nm)? S (?)

Thus the solution is

u(x,t) = ni_o:l (ni)2 sin (%r) sin(nmx) cos(4nmt).

You could clean this up more if you want to. When n is even sin (%) = 0, so only the odd terms
contribute. When n =4k + 1, sin (%) = 1. When n = 4k + 3, sin (%) =—1. O

Solve the system wg = gy, u(z, 0) = sinma + 3sin 27z, ug(z,0) = sinwa, —o0o < & < 0o,t > 0.



Solution. We are given ¢ = 1, f(z) = sinwz 4 3sin 27z, g(z) = sinwz. The solution to the system is

1 1 x4+t
u(et) = 57— 0+ fart]+5 [ gls)ds
x—t
1 1 x+t
=3 [sin7(z —t) + 3sin27(z — t) + sinw(x + t) + 3sin 27 (x + t)] + 3 / sin wsds
r—1

Evaluate the right hand integral and use the identities sin(a%3) = sin acos S+sin 5 cos o, cos(a£ ) =
cos a.cos B F sin asin 8 to simplify:
1
u(x,t) = 3 [Sin mx cosmt — sint cos mx + 3 sin 2wx cos 2wt — 3 sin 27t cos 2mx
1 x+t
+ sin mx cos 7wt + sin 7t cos mx + 3 sin 27z cos 27t + 3 sin 27t cos 271'9:} o COosS TS

71' s=x—t

1 1
=3 [2 sin mx cos wt 4 6 sin 2wz cos 2nt| — o [cosT(x +t) — cosm(x — t)]
T

. 1 . .
= sin 7z cos mt + 3 sin 2wz cos 27t — o [cos mx cos mt — sin 7w sin wt — cos wx cos Tt — sin wx sin 7t
T

. . 1 . .
= sinmx cos wt + 3sin 2wx cos 2wt + — sin 7w sin 7wt
T

12. Solve the system u; = Uye, 0 <z < 1,¢ > 0;u(0,t) = u(1,t) = 0;u(x,0) = e~ *.

Solution. This is a heat equation system. We are given ¢ = 1,L = 1, f(z) = e~*. The general solution
is

oo
u(zx,t) = Z bpe Mt sin (nmz)

n=1

where
Ap = N7
1 1
by, = 2/ f(z)sin(nra)dx = 2/ e Tsin(nmrz)d.
0 0
The integral in b, is a repetitive integral, meaning we need to use integration by parts a couple of

times to evaluate it. Choose u = e™*, dv = sin(nwz)dx:

1 1
/e_”” sin(nrx)dr = ——e ™" cos(nmx) — / —e~ % cos(nmx)dz
nw

nm

Do integration by parts again with u = e™*, dv = cos(nrz)dz:

1 1 1 1
/e*w sin(nmz)der = ——e % cos(nnz) — — (eac sin(nmzx) + / —e ® sin(mmc)dx)
nm nmw \nmw nmw

e ¥ cos(nmz) ! !
= —_— T [ — -
nmw (nm)? (nm)?
Notice the integral on the right hand side is the same as the left hand side. Add it to the left hand
side:

e Tsin(nwz) — e” sin(nrx)dx.

1 1 1
(1 + ) /e_’” sin(nra)der = ——e~ ¥ cos(nmz) — ——e “sin(nwx)
nm

(nm)? (nm)?

Solve for the integral:

¢ sin(nma)de = — [~ e~ cos(nma) — #e-w sin(nmz)
()

nm



Therefore

! 2 1 1 1
by, / e “sin(nrr)dr = ———— (—em cos(nmr) — ——ze ° sin(mm:)) ‘
0 1+ o2 nm (nm) 0
2(nm)? 1 4 2nm (=)™
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)2 1 ( mr) (e cos(nm) + 1) 41 c +
Thus
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