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Answers

This page contains answers only. Detailed solutions are on the following pages.

1. (a) R =∞, I = (−∞,∞)

(b) R = 4, I = (−4, 4]

(c) R = 0, I = { 12}

2. (a) f(x) = −
∞∑
n=0

x7n

(b) f(x) =

∞∑
n=0

(−1)n
xn+3

2n+1

3. −
∞∑
n=0

1

3n+1
(x+ 3)n

4. (a)

∞∑
n=0

1

(2n+ 1)n!
x2n+1 + C

(b)

∞∑
n=0

(−1)nx6n+2

(6n+ 2)(2n)!
+ C

5.
1

3

6. (a) ex
4

(b) −1 + e3

7. (a) f(x) = 3
2 − sinx+ 3 cos 2x− 1

2 cos 6x

(b) f(x) =
p2

3
+

∞∑
n=0

4p2

(nπ)2
(−1)n cos

(
nπ

p
x

)

(c) f(x) =

∞∑
n=1

16

π
(−1)n+1 n

(2n+ 1)2(2n− 1)2
sin(2nx)

8. Cosine series:
1

2
+

∞∑
k=0

−4

(2k + 1)2π2
cos(2k + 1)x

Sine series:

∞∑
n=1

2

nπ
(−1)n+1 sin(nπx)

9. u(x, t) =

∞∑
n=1

8

(nπ)2
sin
(nπ

2

)
sin(nπx) cos(4nπt)

10. u(x, t) =

∞∑
n=1

− 2nπ

(nπ)2 + 1

(
(−1)n

e
+ 1

)
e−(nπ)

2t sin (nπx) .
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Detailed Solutions

1. Find the radius and interval convergence of the series:

(a)

∞∑
n=1

xn

n!

Solution. This is a power series about a = 0. Using the Ratio Test with an = xn

n! , we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

(n+ 1)!
· n!

xn

∣∣∣∣ = lim
n→∞

|x|
n+ 1

= 0 < 1

Since our limit is always less than 1, the radius of convergence is R = ∞ and the interval of
convergence is I = (−∞,∞).

(b)

∞∑
n=2

(−1)n
xn

4n lnn

Solution. This is a power series about a = 0. Using the Ratio test with an = (−1)n xn

4n lnn , we
have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1xn+1

4n+1 ln(n+ 1)
· 4n lnn

(−1)nxn

∣∣∣∣ = lim
n→∞

|x|
4

lnn

ln(n+ 1)

L′H
= lim

n→∞

|x|
4

n+ 1

n
=
|x|
4
< 1

“L’H” denotes where we used L’Hôpital’s Rule to evaluate the limit. We have |x| < 4, hence the
radius of convergence is R = 4. We need to test the endpoints at x = −4, x = 4.

When x = −4:
∞∑
n=2

(−1)n
(−4)n

4n lnn
=

∞∑
n=2

1

lnn
.

Since n > lnn (graph it), then 1
lnn > 1

n . The sum
∑

1
n diverges, therefore by the Comparison

Test,
∑

1
lnn must also diverge. We do not include x = −4 in the interval of convergence.

When x = 4:
∞∑
n=2

(−1)n
(−4)n

4n lnn

∞∑
n=2

(−1)n

lnn
.

The sequence bn = 1
lnn is decreasing and limn→∞ bn = 0. Thus by the Alternating Series test,

the series
∑ (−1)n

lnn converges. We include x = 4 in the interval of convergence.

Therefore the interval of convergence is (−4, 4].

(c)

∞∑
n=1

n!(2x− 1)n

Solution. This is a power series about a = 1
2 since (2x − 1)n = [2(x − 1

2 )]n. Using the ratio test
with an = n!(2x− 1)n, we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n+ 1)!(2x− 1)n+1

n!(2x− 1)n

∣∣∣∣ = lim
n→∞

(n+ 1)|2x− 1| =∞.

The limit is never less than 1, so the radius of convergence is R = 0. Therefore the interval of
convergence is just the point { 12}.
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2. Use the power series
1

1− x
=

∞∑
n=0

xn to find the power series of the following functions:

(a) f(x) =
1

x7 − 1

Solution.

f(x) = − 1

1− x7
= −

∞∑
n=0

(x7)n = −
∞∑
n=0

x7n.

(b) f(x) =
x3

x+ 2

Solution.

f(x) =
x3

2
· 1

1 + x
2

=
x3

2
· 1

1− (−x2 )
=
x3

2

∞∑
n=0

(
−x
2

)n
=

∞∑
n=0

(−1)n
xn+3

2n+1
.

3. Find the Taylor series for f(x) =
1

x
centered at a = −3.

Solution. The Taylor series of f(x) about a = −3 is

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n.

Find a pattern for the nth derivative:

f(x) = x−1

f ′(x) = (−1)x−2

f ′′(x) = (−1)(−2)x−3

f ′′′(x) = (−1)(−2)(−3)x−4

...

f (n)(x) = (−1)(−2) · · · (−n)x−(n+1) = (−1)nn!x−(n+1)

Evaluate the nth derivative at a = −3:

f (n)(−3) = (−1)nn!(−3)−(n+1) =
(−1)nn!

(−1)n+13n+1
=

(−1)n!

3n+1
.

Therefore the Taylor series about a = −3 is

f(x) =

∞∑
n=0

f (n)(−3)

n!
(x+ 3)n =

∞∑
n=0

(−1)n!

3n+1n!
(x+ 3)n = −

∞∑
n=0

1

3n+1
(x+ 3)n.
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4. Evaluate the indefinite integral as an infinite series:

(a)

∫
ex

2

dx

Solution. Since ex =
∑∞
n=0

xn

n! ,

ex
2

=

∞∑
n=0

(x2)n

n!
=

∞∑
n=0

x2n

n!
.

Then∫
ex

2

dx =

∫ ∞∑
n=0

x2n

n!
dx =

∫ (
1 +

x2

1!
+
x4

2!
+
x6

3!
+ ...

)
dx = x+

x3

3 · 1!
+

x5

5 · 2!
+

x7

7 · 3!
+ ...+ C

=

∞∑
n=0

1

(2n+ 1)n!
x2n+1 + C

(b)

∫
x cos(x3)dx

Solution. Since cosx =
∑∞
n=0(−1)n x2n

(2n)! ,

cos(x3) =

∞∑
n=0

(−1)n
(x3)2n

(2n)!
=

∞∑
n=0

(−1)n
x6n

(2n)!
.

Then∫
x cos(x3)dx =

∫
x

∞∑
n=0

(−1)n
x6n

(2n)!
dx =

∫
x

(
1− x6

2!
+
x12

4!
− x18

6!
+ ...

)
dx

=

∫ (
x− x7

2!
+
x13

4!
− x19

6!
+ ...

)
dx =

x2

2
− x8

8 · 2!
+

x14

14 · 4!
− x20

20 · 6!
+ ...+ C

=

∞∑
n=0

(−1)nx6n+2

(6n+ 2)(2n)!
+ C

5. Use series to evaluate the limit lim
x→0

x− tan−1 x

x3
.

Solution. Since tan−1 x =
∑∞
n=0(−1)n x2n+1

(2n+1)! , then

lim
x→0

x− tan−1 x

x3
= lim
x→0

x−
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

x3
= lim
x→0

x−
(
x− x3

3 + x5

5! −
x7

7! + ...
)

x3

= lim
x→0

x3

3 −
x5

5! + x7

7! + ...

x3
= lim
x→0

1

3
− x2

5!
+
x4

7!
+ ... =

1

3
.
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6. Find the sum of the series:

(a)

∞∑
n=0

(−1)n
x4n

n!

Solution. Rewrite the series as
∞∑
n=0

(−x4)n

n!
= e−x

4

.

(b) 3 +
9

2!
+

27

3!
+

81

4!
+ ...

Solution. We can write the sum as the series

∞∑
n=1

3n

n!
= −30

0!
+

30

0!
+

∞∑
n=1

3n

n!
= −1 +

∞∑
n=0

3n

n!
= −1 + e3.

7. Find the Fourier series of the function:

(a) f(x) = 1− sinx+ 3 cos 2x+ sin2(3x), −π ≤ x ≤ π

Solution. A Fourier series is a sum of cosine and sine terms. We already have cosine and sine
terms here, we just need to rewrite sin2(3x) and we are done:

f(x) = 1− sinx+ 3 cos 2x+ sin2(3x) = 1− sinx+ 3 cos 2x+
1

2
(1− cos 6x)

=
3

2
− sinx+ 3 cos 2x− 1

2
cos 6x

(b) f(x) = x2, −p ≤ x ≤ p

Solution. f is even so it only has cosine terms in its Fourier series:

f(x) = a0 +

∞∑
n=1

an cos
(nπ
L
x
)
.

Since we are on the interval −p ≤ x ≤ p, L = p. Find a0 and an (use integration by parts for an):

a0 =
1

p

∫ p

0

f(x)dx =
1

p

∫ p

0

x2dx =
x3

3p

∣∣∣p
0

=
p2

3

an =
2

p

∫ p

0

f(x) cos

(
nπ

p
x

)
dx =

2

p

∫ p

0

x2 cos

(
nπ

p
x

)
dx

=
2

p

[
x2

p

nπ
sin

(
nπ

p
x

)
+ 2x

( p

nπ

)2
cos

(
nπ

p
x

)
− 2

( p

nπ

)3
sin

(
nπ

p
x

)] ∣∣∣p
0

=
4p2

(nπ)2
cosnπ =

4p2

(nπ)2
(−1)n.

Thus

f(x) =
p2

3
+

∞∑
n=0

4p2

(nπ)2
(−1)n cos

(
nπ

p
x

)
.
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(c) f(x) = x cosx if −π2 < x < π
2

Hint : This is a tough one. Use the fact that the function is odd. Also use the formula
cos(α) sin(β) = 1

2 [sin(α+ β) + sin(α− β)].

Solution. f is odd, so it only has sine terms in its Fourier series:

f(x) =

∞∑
n=1

bn cos
(nπ
L
x
)
.

Since we are on the interval −π2 < x < π
2 , L = π

2 . Find bn:

bn =
2
π
2

∫ π/2

0

f(x) sin

(
nπ
π
2

x

)
dx =

4

π

∫ π/2

0

x cosx sin(2nx)dx

Use the given formula on cosx sin(2nx), then evaluate using integration by parts:

bn =
4

π

∫ π/2

0

x cosx sin(2nx)dx =
4

π

∫ π/2

0

x · 1

2
(sin(2n+ 1)x+ sin(2n− 1)x) dx

=
2

π

[
x

(
−cos(2n+ 1)x

2n+ 1
− cos(2n− 1)x

2n− 1

)
+

sin(2n+ 1)x

(2n+ 1)2
+

sin(2n− 1)x

(2n− 1)2

] ∣∣∣π/2
0

=
2

π

[
sin(2n+ 1)π2

(2n+ 1)2
+

sin(2n− 1)π2
(2n− 1)2

]
=

2

π

[
(−1)n+1

(2n+ 1)2
+

(−1)n

(2n− 1)2

]
=

2

π
(−1)n

(
−1

(2n+ 1)2
+

1

(2n− 1)2

)
=

2

π
(−1)n

(
(2n+ 1)2 − (2n− 1)2

(2n+ 1)2(2n− 1)2

)
=

16

π
(−1)n+1 n

(2n+ 1)2(2n− 1)2
.

Thus

f(x) =

∞∑
n=1

16

π
(−1)n+1 n

(2n+ 1)2(2n− 1)2
sin(2nx).

8. Find the cosine and sine series of the function f(x) = x, 0 < x < 1.

Solution. We are only given half of our periodic function.

For the cosine series, we need to find the even expansion of f(x) = x which is f(x) = |x| for −1 < x < 1.
In this case, L = 1. The cosine series is

f(x) = a0 +

∞∑
n=1

an cos(nπx)

where

a0 =
1

L

∫ L

0

f(x)dx =

∫ 1

0

xdx =
x2

2

∣∣∣1
0

=
1

2
.

an =
2

L

∫ L

0

f(x) cos(nπx)dx = 2

∫ 1

0

x cos(nπx)dx = 2

[
x

nπ
sin(nπx) +

1

(nπ)2
cos(nπx)

] ∣∣∣1
0

=
2

(nπ)2
(cos(nπ)− 1).

When n is even, cos(nπ) = 1 which implies that an = 0. When n is odd, cos(nπ) = −1, which implies
that

an =
−4

(nπ)2
.
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Thus the cosine series is

f(x) =
1

2
+
∑
n odd

−4

(nπ)2
cos(nπx) =

1

2
+

∞∑
k=0

−4

(2k + 1)2π2
cos(2k + 1)x.

For the sine series, we need to find the odd expansion of f(x) which is f(x) = x for −1 < x < 1. In
this case, L = 1. The sine series is

f(x) =

∞∑
n=1

bn sin(nπx)

where

bn =
2

L

∫ L

0

f(x) sin(nπx) = 2

∫ 1

0

x sin(nπx)dx = 2

[
−x
nπ

cos(nπx) +
1

(nπ)2
sin(nπx)

] ∣∣∣1
0

= − 2

nπ
cos(nπ) = − 2

nπ
(−1)n =

2

nπ
(−1)n+1.

Thus the sine series is

f(x) =

∞∑
n=1

2

nπ
(−1)n+1 sin(nπx).

9. Solve the system utt = 16uxx, 0 ≤ x ≤ 1, t ≥ 0;u(0, t) = u(1, t) = 0;u(x, 0) = f(x), ut(x, 0) = 0 where

f(x) =

{
2x, 0 ≤ x ≤ 1

2

2(1− x), 1
2 < x ≤ 1.

Solution. This is a wave equation system. We are given c = 4, L = 1, g(x) = 0, and f(x) as described
above. The general solution is

u(x, t) =

∞∑
n=1

sin(nπx) (bn cosλnt+ b∗n sinλnt)

where

bn = 2

∫ 1

0

f(x) sin(nπx)dx

b∗n =
2

4nπ

∫ 1

0

g(x) sin(nπx)dx

λn = 4nπ.

b∗n = 0 since g(x) = 0. Find bn (use integration by parts):

bn = 2

[∫ 1/2

0

2x sin(nπx)dx+

∫ 1

1/2

2(1− x) sin(nπx)dx

]

= 2

[(
− 2x

nπ
cos(nπx) +

2

(nπ)2
sin(nπx)

) ∣∣∣1/2
0

+

(
−2(1− x)

nπ
cos(nπx)− 2

(nπ)2
sin(nπx)

) ∣∣∣1
1/2

]
=

8

(nπ)2
sin
(nπ

2

)
Thus the solution is

u(x, t) =

∞∑
n=1

8

(nπ)2
sin
(nπ

2

)
sin(nπx) cos(4nπt).

You could clean this up more if you want to. When n is even sin
(
nπ
2

)
= 0, so only the odd terms

contribute. When n = 4k + 1, sin
(
nπ
2

)
= 1. When n = 4k + 3, sin

(
nπ
2

)
= −1.
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10. Solve the system ut = uxx, 0 ≤ x ≤ 1, t ≥ 0;u(0, t) = u(1, t) = 0;u(x, 0) = e−x.

Solution. This is a heat equation system. We are given c = 1, L = 1, f(x) = e−x. The general solution
is

u(x, t) =

∞∑
n=1

bne
−λ2

nt sin (nπx)

where

λn = nπ

bn = 2

∫ 1

0

f(x) sin(nπx)dx = 2

∫ 1

0

e−x sin(nπx)dx.

The integral in bn is a repetitive integral, meaning we need to use integration by parts a couple of
times to evaluate it. Choose u = e−x, dv = sin(nπx)dx:∫

e−x sin(nπx)dx = − 1

nπ
e−x cos(nπx)−

∫
1

nπ
e−x cos(nπx)dx

Do integration by parts again with u = e−x, dv = cos(nπx)dx:∫
e−x sin(nπx)dx = − 1

nπ
e−x cos(nπx)− 1

nπ

(
1

nπ
e−x sin(nπx) +

∫
1

nπ
e−x sin(nπx)dx

)
= − 1

nπ
e−x cos(nπx)− 1

(nπ)2
e−x sin(nπx)− 1

(nπ)2
ex sin(nπx)dx.

Notice the integral on the right hand side is the same as the left hand side. Add it to the left hand
side: (

1 +
1

(nπ)2

)∫
e−x sin(nπx)dx = − 1

nπ
e−x cos(nπx)− 1

(nπ)2
e−x sin(nπx)

Solve for the integral:∫
e−x sin(nπx)dx =

1

1 + 1
(nπ)2

(
− 1

nπ
e−x cos(nπx)− 1

(nπ)2
e−x sin(nπx)

)
Therefore

bn = 2

∫ 1

0

e−x sin(nπx)dx =
2

1 + 1
(nπ)2

(
− 1

nπ
e−x cos(nπx)− 1

(nπ)2
e−x sin(nπx)

) ∣∣∣1
0

=
2(nπ)2

(nπ)2 + 1

(
− 1

nπ

)(
e−1 cos(nπ) + 1

)
= − 2nπ

(nπ)2 + 1

(
(−1)n

e
+ 1

)
.

Thus

u(x, t) =

∞∑
n=1

− 2nπ

(nπ)2 + 1

(
(−1)n

e
+ 1

)
e−(nπ)

2t sin (nπx) .
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