Math 6B Practice Problems II

Written by Victoria Kala
vtkala@math.ucsb.edu
SH 6432u Office Hours: R 12:30 — 1:30pm
Last updated 6,/2/2016

Answers

This page contains answers only. Detailed solutions are on the following pages.
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Detailed Solutions

1. Find the radius and interval convergence of the series:
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Solution. This is a power series about a = 0. Using the Ratio Test with a,, = %, we have
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Since our limit is always less than 1, the radius of convergence is R = oo and the interval of

convergence is [ = (—00, 00). O
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Solution. This is a power series about a = 0. Using the Ratio test with a, = (—1)"%, we
have
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“L’H” denotes where we used L’Hépital’s Rule to evaluate the limit. We have |z| < 4, hence the
radius of convergence is R = 4. We need to test the endpoints at x = —4,z = 4.

When xz = —4:
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Since n > Inn (graph it), then ﬁ > % The sum Z% diverges, therefore by the Comparison

Test, > ﬁ must also diverge. We do not include z = —4 in the interval of convergence.
When z = 4:
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The sequence b,, = ﬁ is decreasing and lim,,_,., b, = 0. Thus by the Alternating Series test,
the series > (l_nl'r)L" converges. We include z = 4 in the interval of convergence.
Therefore the interval of convergence is (—4, 4]. O
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Solution. This is a power series about a = 3 since (22 — 1)” = [2(z — 3)]". Using the ratio test
with a, = n!(2z — 1), we have
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The limit is never less than 1, so the radius of convergence is R = 0. Therefore the interval of
convergence is just the point {%} O
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Z 2" to find the power series of the following functions:

2. Use the power series =
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3. Find the Taylor series for f(z) = - centered at a = —3
Solution. The Taylor series of f(z) about a = —3 is
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Find a pattern for the nth derivative:
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Evaluate the nth derivative at a = —3
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4. Evaluate the indefinite integral as an infinite series:
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Solution. Since cosz =y " (—1)" %
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6. Find the sum of the series:
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Solution. Rewrite the series as
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Solution. We can write the sum as the series
o0 o0 o0
3n 30 30 3n 3n 3
Zm:—ﬁ—Fa—F H:—l—FZm:—l—Fe.
n=1 n=1 n=0
O

7. Find the Fourier series of the function:
(a) f(z)=1—sinz+3cos2zx +sin’(3z), —r<z <7

Solution. A Fourier series is a sum of cosine and sine terms. We already have cosine and sine
terms here, we just need to rewrite sin?(3x) and we are done:

1
f(z) =1 —sinz + 3cos 2z + sin®(3z) = 1 — sinz + 3 cos 2z + 5(1 — cos 6x)

3 1
= — —sinz + 3cos2x — 500863;

(b) f(z)=a? —p<az<p

Solution. f is even so it only has cosine terms in its Fourier series:

fl@)=ao+ i ay, Cos (%x) .
n=1

Since we are on the interval —p < x < p, L = p. Find ag and a,, (use integration by parts for a,,):
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(c) f(z) =xcoszif —-F <x <%
Hint: This is a tough one. Use the fact that the function is odd. Also use the formula
cos(a) sin(B) = 3 [sin(a + B) + sin(a — B)].

Solution. f is odd, so it only has sine terms in its Fourier series:

flx) = i by, cos (%x) .

Since we are on the interval —Z < x < Z, L = Z. Find b,:
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Use the given formula on cos z sin(2nx), then evaluate using integration by parts:
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8. Find the cosine and sine series of the function f(z) =z, 0 <z < 1.

Solution. We are only given half of our periodic function.

For the cosine series, we need to find the even expansion of f(z) = « which is f(z) = |z| for =1 < = < 1.
In this case, L = 1. The cosine series is

f(z)=ao+ Z ap, cos(nmx)

n=1
where
1 [k ! 211
a = 7 /0 f(z)dx /0 vde = —| =3
2 [* ! z 1 1
ap = E/o f(z) cos(nma)dx = 2/0 x cos(nmrz)dr = 2 [mr sin(nmzx) + o cos(mm:)] ‘0
2
= ()2 (cos(nm) —1).
When n is even, cos(nm) = 1 which implies that a,, = 0. When n is odd, cos(nt) = —1, which implies
that
—4
ap, = .
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Thus the cosine series is

cos(2k + 1)z.
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For the sine series, we need to find the odd expansion of f(z) which is f(z) =z for -1 <z < 1. In
this case, L = 1. The sine series is

f(z) = Z by, sin(nmrz)

where

1
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Thus the sine series is

fla)=">_ %(71)7”1 sin(nmz).
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. Solve the system us = 16uy,,0 <z < 1,t > 0;u(0,t) = u(1,t) = 0;u(x,0) = f(x),ut(x,0) = 0 where

2z, 0<
J(@) = {2(1 —a), l<

Solution. This is a wave equation system. We are given c =4, L =1, g(x) =0, and f(x) as described
above. The general solution is

u(z,t) = Z sin(nmx) (b, cos Ayt + by, sin A, t)

n=1

where
1
by, = 2/ f(z) sin(nma)dx
0
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by = Tnm /. g(z) sin(nrz)dr

A = 4nm.

b = 0 since g(z) = 0. Find b, (use integration by parts):

1/2 1
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Thus the solution is

u(x,t) = g (ni)Q sin (%r) sin(nmx) cos(4nwt).

You could clean this up more if you want to. When n is even sin ("—2”) = 0, so only the odd terms
contribute. When n =4k + 1, sin (%) = 1. When n = 4k + 3, sin (%) = -1 O



10. Solve the system us = gy, 0 <z < 1, > 0;u(0,t) = u(1,t) = 0;u(x,0) = e~ *.
Solution. This is a heat equation system. We are given ¢ = 1, L = 1, f(z) = e*. The general solution
is
u(zx,t) = i bpe Mt sin (nmz)
n=1
where
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1 1
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0 0

The integral in b, is a repetitive integral, meaning we need to use integration by parts a couple of
times to evaluate it. Choose u = ¢™%,dv = sin(nnx)dx:
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Do integration by parts again with u = e™*, dv = cos(nrz)dz:
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Notice the integral on the right hand side is the same as the left hand side. Add it to the left hand
side:
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Solve for the integral:
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