

Math 6B Practice Problems I

Written by Victoria Kala

vtkala@math.ucsb.edu

SH 6432u Office Hours: R 12:30 – 1:30pm

Last updated 4/21/2016

- Evaluate $\int_C y^2 dx + 3xy dy$, where C is the boundary of the semiannular region D in the upper half plane between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$. (You may assume that C is positively oriented.)
- Use Green's Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = (\sqrt{x} + y^3, x^2 + \sqrt{y})$, and C consists of the arc of the curve $y = \sin x$ from $(0, 0)$ to $(\pi, 0)$ and the line segment from $(\pi, 0)$ to $(0, 0)$.
- Use Stokes' Theorem to evaluate $\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = x^2 z^2 \mathbf{i} + y^2 z^2 \mathbf{j} + xyz \mathbf{k}$ and S is the part of the paraboloid $z = x^2 + y^2$ that lies inside the cylinder $x^2 + y^2 = 4$.
- Consider the vector field $\mathbf{F}(x, y, z) = yz \mathbf{i} + 2xz \mathbf{j} + e^{xy} \mathbf{k}$, where C is circle $x^2 + y^2 = 16, z = 5$ oriented counterclockwise when viewed from above.
 - Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$ by finding an appropriate parametrization vector $\mathbf{r}(t)$.
 - Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$ using Stokes' Theorem, and verify it is equal to your solution in part (a).
- Verify that the Divergence Theorem is true for the vector field $\mathbf{F}(x, y, z) = 3x \mathbf{i} + xy \mathbf{j} + 2xz \mathbf{k}$ where E is the cube bounded by the planes $x = 0, x = 1, y = 0, y = 1, z = 0, z = 1$.
Note: to verify the theorem is true you need to show that $\iint_S \mathbf{F} \cdot d\mathbf{S} = \iiint_E \operatorname{div} \mathbf{F} dV$; that is, you need to calculate both integrals and show they are equal.
- Use the Divergence Theorem to calculate the surface integral $\iint \mathbf{F} \cdot d\mathbf{S}$; that is, calculate the flux of \mathbf{F} across S where $\mathbf{F}(x, y, z) = (\cos z + xy^2) \mathbf{i} + xe^{-z} \mathbf{j} + (\sin y + x^2 z) \mathbf{k}$, and S is the surface of the solid bounded by the paraboloid $z = x^2 + y^2$ and the plane $z = 4$.
- Determine whether the sequence converges or diverges. If it converges, find the limit.
 - $a_n = e^{1/n}$
 - $a_n = n \sin\left(\frac{1}{n}\right)$
 - $a_n = 1 - (0.2)^n$
 - $a_n = n^2 e^{-n}$
 - $a_n = \frac{(-1)^{n-1} n}{n^2 + 1}$
 - $a_n = \frac{\cos^2 n}{2^n}$
 - $a_n = \frac{n^n}{n!}$

- Determine whether the series is convergent or divergent. State what test(s) you used to come to your conclusion.

$$(a) \sum_{n=1}^{\infty} \frac{1+3^n}{2^n} \quad (d) \sum_{n=1}^{\infty} \frac{2}{n^{0.85}} \quad (g) \sum_{n=1}^{\infty} \frac{(-1)^n n}{10^n} \quad (j) \sum_{n=1}^{\infty} \left(\frac{n^2 + 1}{2n^2 + 1} \right)^n$$

$$(b) \sum_{n=1}^{\infty} \frac{e^n}{n^2} \quad (e) \sum_{n=1}^{\infty} \frac{1 + \sin n}{10^n} \quad (h) \sum_{n=1}^{\infty} \cos\left(\frac{\pi}{n}\right)$$

$$(c) \sum_{n=1}^{\infty} n e^{-n} \quad (f) \sum_{n=1}^{\infty} \frac{n+1}{n\sqrt{n}} \quad (i) \sum_{n=1}^{\infty} \frac{(-10)^n}{n!}$$

- Use the Integral test to prove that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.