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Answers

This page contains answers only. Detailed solutions are on the following pages.
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Detailed Solutions

1. Evaluate
∫
C
y2dx + 3xydy, where C is the boundary of the semiannular region D in the upper half

plane between the circles x2 +y2 = 1 and x2 +y2 = 4. (You may assume that C is positively oriented.)

Solution. D is the region {(x, y) : 1 ≤ x2 + y2 ≤ 4} = {(r, θ) : 1 ≤ r ≤ 2, 0 ≤ θ ≤ π}. Using Green’s
Theorem, we have∫

C

y2dx+ 3xydy = −
∫∫

D

(
∂

∂x
(3xy)− ∂

∂y
(y2)

)
dA =

∫∫
D

(3y − 2y)) dA =

∫∫
D

ydA

=

∫ π

0

∫ 2

1

r sin θ · rdrdθ =

∫ π

0

sin θdθ

∫ 2

1

r2dr = (− cos θ)
∣∣∣π
0
· 1

3
r3
∣∣∣2
1

=
14

3

2. Use Green’s Theorem to evaluate
∫
C
F · dr, where F(x, y) = (

√
x+ y3, x2 +

√
y), and C consists of the

arc of the curve y = sinx from (0, 0) to (π, 0) and the line segment from (π, 0) to (0, 0).

Solution. Notice that C has negative (clockwise) orientation. We will need to change the sign of our
solution at the end. D is the region {(x, y) : 0 ≤ x ≤ π, 0 ≤ y ≤ sinx}. Using Green’s Theorem, we
have∫
C

F · dr =

∫∫
D

(
∂

∂x
(x2 +

√
y)− ∂

∂y
(
√
x+ y3)

)
dA =

∫ π

0

∫ sin x

0

(2x− 3y2)dydx

=

∫ π

0

(
2xy − y3

) ∣∣∣sin x
0

dx =

∫ π

0

(
2x sinx− sin3 x

)
dx =

∫ π

0

(
2x sinx− sinx(1− cos2 x)

)
dx

=

∫ π

0

(
2x sinx− sinx+ sinx cos2 xdx

)
dx =

(
−2x cosx+ 2 sinx+ cosx− 1

3
cos3 x

) ∣∣∣π
0

= 2π − 2 +
2

3

But since C had negative clockwise orientation, we must multiply our solution by negative one:∫
C

F · dr =
4

3
− 2π.

3. Use Stokes’ Theorem to evaluate
∫∫
S

curl F · dS where F = x2z2i + y2z2j + xyzk and S is the part of
the paraboloid z = x2 + y2 that lies inside the cylinder x2 + y2 = 4.

Solution. We need to find a parametrization r(t) to evaluate
∫
C
F ·dr. The closed curve of intersection

of the paraboloid and cylinder is the circle x2 + y2 = 4 at z = 4, which can be parametrized by

r(t) = (2 cos t, 2 sin t, 4), 0 ≤ t ≤ 2π.

Then we have∫
C

F · dr =

∫ 2π

0

F(r(t)) · r′(t)dt =

∫ 2π

0

(64 cos2 t, 64 sin2 t, 16 cos t sin t) · (−2 sin t, 2 cos t, 0)dt

=

∫ 2π

0

(−128 sin t cos2 t+ 128 sin2 t cos t)dt = 128

(
1

3
cos3 t+

1

3
sin3 t

) ∣∣∣2π
0

= 0.
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4. Consider the vector field F(x, y, z) = yzi + 2xzj + exyk, where C is circle x2 + y2 = 16, z = 5 oriented
counterclockwise when viewed from above.

(a) Calculate
∫
C
F · dr by finding an appropriate parametrization vector r(t).

Solution. The parametrization for the circle x2 + y2 = 16, z = 5 is given by

r(t) = (4 cos t, 4 sin t, 5), 0 ≤ t ≤ 2π.

Then∫
C

F · dr =

∫ 2π

0

F(r(t)) · r′(t)dt =

∫ 2π

0

(20 sin t, 40 cos t, e16 cos t sin t) · (−4 sin t, 4 cos t, 0)dt

=

∫ 2π

0

(−80 sin2 t+ 160 cos2 t)dt =

∫ 2π

0

(−40(1− cos 2t) + 80(1 + cos 2t))dt

=

∫ 2π

0

(40 + 120 cos 2t)dt = (40t+ 60 sin 2t)
∣∣∣2π
0

= 80π.

(b) Calculate
∫
C
F · dr using Stokes’ Theorem, and verify it is equal to your solution in part (a).

Solution. We need to evaluate
∫∫
S

curl F · dS. The normal to the surface is the normal to z = 5,
which is n = k. The curl of F is given by

curl F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

yz 2xz exy

∣∣∣∣∣∣ = i

∣∣∣∣ ∂
∂y

∂
∂z

2xz exy

∣∣∣∣− j

∣∣∣∣ ∂∂x ∂
∂z

yz exy

∣∣∣∣+ k

∣∣∣∣ ∂∂x ∂
∂y

yz 2xz

∣∣∣∣
= i(xexy − 2x)− j(yexy − y) + k(2z − z).

Then curl F · n = z, but on our surface z = 5, hence∫∫
S

curl F · dS =

∫∫
D

zdA =

∫∫
D

5dA = 5 · π · 42 = 80π.

5. Verify that the Divergence Theorem is true for the vector field F(x, y, z) = 3xi + xyj + 2xzk where E
is the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
Note: to verify the theorem is true you need to show that

∫∫
S
F ·dS =

∫∫∫
E

div FdV ; that is, you need
to calculate both integrals and show they are equal.

Solution. We will evaluate
∫∫
S
F · dS on each of the different faces of the cube then take their sum.

On x = 0, n = −i, D = {(y, z) : 0 ≤ y ≤ 1, 0 ≤ z ≤ 1} and∫∫
S

F · dS =

∫∫
D

−3xdA =

∫∫
D

0dA = 0.

On x = 1, n = i, D = {(y, z) : 0 ≤ y ≤ 1, 0 ≤ z ≤ 1} and∫∫
S

F · dS =

∫∫
D

3xdA =

∫∫
D

3dA = 3.

On y = 0, n = −j, D = {(x, z) : 0 ≤ x ≤ 1, 0 ≤ z ≤ 1} and∫∫
S

F · dS =

∫∫
D

−xydA =

∫∫
D

0dA = 0.
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On y = 0, n = j, D = {(x, z) : 0 ≤ x ≤ 1, 0 ≤ z ≤ 1} and∫∫
S

F · dS =

∫∫
D

xydA =

∫∫
D

xdA =

∫ 1

0

∫ 1

0

xdxdz =
1

2
.

On z = 0, n = −k, D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ z ≤ 1} and∫∫
S

F · dS =

∫∫
D

−2xzdA =

∫∫
D

0dA = 0.

On z = 1, n = k, D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ z ≤ 1} and∫∫
S

F · dS =

∫∫
D

2xzdA =

∫∫
D

2xdA =

∫ 1

0

∫ 1

0

2xdxdy = 1.

Therefore ∫∫
S

F · dS = 0 + 3 + 0 +
1

2
+ 0 + 1 =

9

2
.

Now we will evaluate
∫∫∫

E
div FdV where E = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}. The

divergence of F is given by

div F =
∂

∂x
(3x) +

∂

∂y
(xy) +

∂

∂z
(2xz) = 3 + x+ 2x = 3x+ 3.

Therefore∫∫∫
E

div FdV =

∫∫∫
E

(3x+ 3)dV =

∫ 1

0

∫ 1

0

∫ 1

0

(3x+ 3)dxdydz =

(
3

2
x2 + 3x

) ∣∣∣1
0

=
3

2
+ 3 =

9

2
.

6. Use the Divergence Theorem to calculate the surface integral
∫∫

F · dS; that is, calculate the flux of F
across S where F(x, y, z) = (cos z + xy2)i + xe−zj + (sin y + x2z)k, and S is the surface of the solid
bounded by the paraboloid z = x2 + y2 and the plane z = 4.

Solution. We will evaluate
∫∫∫

E
div FdV where E = {(x, y, z) : x2 + y2 ≤ z ≤ 4} = {(r, θ, z) : 0 ≤ r ≤

2, 0 ≤ θ ≤ 2π, r2 ≤ z ≤ 4}. The divergence of F is given by

div F =
∂

∂x
(cos z + xy2) +

∂

∂y
(xe−z) +

∂

∂z
(sin y + x2z) = y2 + x2.

Then∫∫∫
E

div FdV =

∫∫∫
E

(x2 + y2)dV =

∫ 2π

0

∫ 2

0

∫ 4

r2
r2 · rdzdrdθ = 2π

∫ 2

0

∫ 2π

0

r3dzdr = 2π

∫ 2

0

r3z
∣∣∣z=4

z=r2
dr

= 2π

∫ 2

0

r3(4− r2)dr = 2π

∫ 2

0

(4r3 − r5)dr = 2π

(
r4 − 1

6
r6
) ∣∣∣2

0
= 2π

(
16− 64

6

)
=

32π

3
.

7. Determine whether the sequence converges or diverges. If it converges, find the limit.

(a) an = e1/n

4



Solution. Since ex is a continuous function, we can pass the limit through the function:

lim
n→∞

an = lim
n→∞

e1/n = exp

(
lim
n→∞

1

n

)
= e0 = 1.

Thus an converges to 1.

(b) an = n sin

(
1

n

)
Solution. Let f(x) = x sin

(
1
x

)
. We will evaluate the limit as x→∞ using L’Hôpital’s rule:

lim
x→∞

x sin

(
1

x

)
= lim
x→∞

sin
(
1
x

)
1
x

= lim
x→∞

cos
(
1
x

)
· − 1

x2

− 1
x2

= lim
x→∞

cos

(
1

x

)
= cos

(
lim
x→∞

1

x

)
= cos 0 = 1.

Notice we used the fact that cosine is continuous to pass the limit through the function. Thus an
converges to 1.

(c) an = 1− (0.2)n

Solution.

lim
n→∞

(1− (0.2)n) = 1− lim
n→∞

(
1

5

)n
= 1− lim

n→∞

1

5n
= 1− 0 = 1.

Thus an converges to 1.

(d) an = n2e−n

Solution. Let f(x) = x2e−x. We will evaluate the limit as x→∞ using L’Hôpital’s rule:

lim
x→∞

x2

ex
= lim
x→∞

2x

ex
= lim
x→∞

2

ex
= 0.

Thus an converges to 0.

(e) an =
(−1)n−1n

n2 + 1

Solution. We will check to see if limn→∞ |an| converges:

lim
n→∞

∣∣∣∣ (−1)n−1n

n2 + 1

∣∣∣∣ = lim
n→∞

n

n2 + 1
= lim
n→∞

1
n

1 + 1
n2

= 0.

Since |an| converges to 0, by a theorem we have an also converges to 0.

(f) an =
cos2 n

2n

Solution. We will use Squeeze Theorem. Since 0 ≤ cos2 n ≤ 1, then

0 ≤ cos2 n

2n
≤ 1

2n
.

Take the limit on each side as n→∞:

lim
n→∞

0 ≤ lim
n→∞

cos2 n

2n
≤ lim
n→∞

1

2n

0 ≤ lim
n→∞

cos2 n

2n
≤ 0.

Thus an converges to 0 by Squeeze Theorem.
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(g) an =
nn

n!

Solution. Write out a general term of the sequence:

an =
n · n · n · · ·n · n

1 · 2 · 3 · · · (n− 1) · n
=
n

1

(
n

2
· n

3
· · · n

n− 1
· n
n

)
The rightmost term is n

n = 1. Since n − 1 < n, then n
n−1 ≥ 1. In fact, each fraction in the

parenthesis will be greater than 1 for large enough n:

an =
n

1

(
n

2
· n

3
· · · n

n− 1
· n
n

)
≥ n (1 · 1 · · · 1 · 1) = n.

Therefore an ≥ n, and since limn→∞ n diverges, so does an.

8. Determine whether the series is convergent or divergent. State what test(s) you used to come to your
conclusion.

(a)

∞∑
n=1

1 + 3n

2n

Solution. We can rewrite the sum:

∞∑
n=1

1 + 3n

2n
=

∞∑
n=1

(
1

2n
+

3n

2n

)
=

∞∑
n=1

(
1

2

)n
+

∞∑
n=1

(
3

2

)n
.

Both of these series are geometric series. The series on the left with r = 1
2 will converge, however

the series on the right with r = 3
2 > 1 will diverge. Hence the series is divergent (by geometric

series).

(b)

∞∑
n=1

en

n2

Solution. Let f(x) =
ex

x2
. We will evaluate the limit as x→∞ using L’Hôpital’s rule:

lim
x→∞

ex

x2
= lim
x→∞

ex

2x
= lim
x→∞

ex

2
=∞.

The limit diverges, hence the series diverges by the Divergence Test.

(c)

∞∑
n=1

ne−n

Solution. Let f(x) = xe−x. f is continuous, positive, decreasing (f ′ < 0), so we can apply the
integral test: ∫ ∞

1

xe−xdx =
(
−xe−x − e−x

) ∣∣∣∞
1

= − lim
x→∞

x+ 1

ex
− (−e−1 − e−1)

The limit converges using L’Hôpital’s rule, therefore the integral converges. Since the integral
converges, the series also converges by the Integral Test.

(d)

∞∑
n=1

2

n0.85
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Solution. We can rewrite the sum:
∞∑
n=1

2

n0.85
= 2

∞∑
n=1

1

n0.85
.

Since p = 0.85 < 1, this series diverges by the p-Series Test.

(e)

∞∑
n=1

1 + sinn

10n

Solution. Since sinn ≤ 1, then 1 + sinn ≤ 2, and we have

1 + sinn

10n
≤ 2

10n
.

The series
∞∑
n=1

2

10n
= 2

∞∑
n=1

(
1

10

)n

is a convergent geometric series with r = 1
10 < 1. Therefore

∞∑
n=1

1 + sinn

10n
converges by the

Comparison Test.

(f)

∞∑
n=1

n+ 1

n
√
n

Solution. Since n+ 1 > n, then

n+ 1

n
√
n
>

n

n
√
n
⇒ n+ 1

n
√
n
>

1√
n
.

The series
∞∑
n=1

1√
n

is a divergent p-series with p = 1
2 < 1. Therefore

∞∑
n=1

n+ 1

n
√
n

is divergent by the Comparison

Test.

(g)

∞∑
n=1

(−1)nn

10n

Proof. We will use the Alternating Series Test. Let an =
n

10n
. We need to show that an forms a

decreasing sequence. Let f(x) =
x

10x
, we will show that f ′ < 0:

f ′(x) =
10x(x)′ − x(10x)′

102x
=

10x − x ln 10(10)x

102x
=

10x(1− x ln 10)

102x
=

1− x ln 10

10x
< 0

for x > 1. Thus an is decreasing.

Now we need to show an converges to 0. We will do this by using L’Hôpital’s Rule to show that
f(x) converges to 0 as x→∞:

lim
x→∞

x

10x
= lim
x→∞

1

10x ln 10
= 0.

Thus an converges to 0.

Therefore

∞∑
n=1

(−1)nn

10n
converges by the Alternating Series Test.
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(h)

∞∑
n=1

cos
(π
n

)
Solution. Since cosine is continuous,

lim
n→∞

cos
(π
n

)
= cos

(
lim
n→∞

π

n

)
= cos 0 = 1.

Since the limit is not equal to zero, then the series diverges by the Divergence Test.

(i)

∞∑
n=1

(−10)n

n!

Solution. Let an =
(−10)n

n!
. We will use the Ratio Test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−10)n+1

(n+ 1)!
· n!

(−10)n

∣∣∣∣ = lim
n→∞

∣∣∣∣ −10

n+ 1

∣∣∣∣ = lim
n→∞

10

n+ 1
= 0 < 1,

therefore the series is convergent by the Ratio Test.

(j)

∞∑
n=1

(
n2 + 1

2n2 + 1

)n

Solution. Let an =

(
n2 + 1

2n2 + 1

)n
. We will use the Root Test:

lim
n→∞

n
√
|an| = lim

n→∞

n2 + 1

2n2 + 1
=

1

2
< 1,

therefore the series is convergent by the Root Test.

9. Use the Integral test to prove that the harmonic series

∞∑
n=1

1

n
is divergent.

Solution. Let f(x) =
1

x
. f is continuous, positive, decreasing on [1,∞), so we can apply the Integral

Test. The integral ∫ ∞
1

1

x
= lnx

∣∣∣∞
1

= lim
x→∞

x− ln 1

diverges, hence by the Integral Test the harmonic series diverges.
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