

Math 6B Practice Problems I

Written by Victoria Kala

vtkala@math.ucsb.edu

SH 6432u Office Hours: R 12:30 – 1:30pm

Last updated 4/25/2016

Answers

This page contains answers only. Detailed solutions are on the following pages.

1. $\frac{14}{3}$

2. $\frac{4}{3} - 2\pi$

3. 0

4. (a) 80π

(b) 80π

5. $\frac{9}{2}$

6. $\frac{32\pi}{3}$

7. (a) convergent, 1
(b) convergent, 1
(c) convergent, 1
(d) convergent, 0
(e) convergent, 0
(f) convergent, 0
(g) divergent

8. (a) divergent

(b) divergent

(c) convergent

(d) divergent

(e) convergent

(f) divergent

(g) convergent

(h) divergent

(i) convergent

(j) convergent

9. See detailed solution

Detailed Solutions

1. Evaluate $\int_C y^2 dx + 3xy dy$, where C is the boundary of the semiannular region D in the upper half plane between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$. (You may assume that C is positively oriented.)

Solution. D is the region $\{(x, y) : 1 \leq x^2 + y^2 \leq 4\} = \{(r, \theta) : 1 \leq r \leq 2, 0 \leq \theta \leq \pi\}$. Using Green's Theorem, we have

$$\begin{aligned} \int_C y^2 dx + 3xy dy &= - \iint_D \left(\frac{\partial}{\partial x}(3xy) - \frac{\partial}{\partial y}(y^2) \right) dA = \iint_D (3y - 2y) dA = \iint_D y dA \\ &= \int_0^\pi \int_1^2 r \sin \theta \cdot r dr d\theta = \int_0^\pi \sin \theta d\theta \int_1^2 r^2 dr = (-\cos \theta) \Big|_0^\pi \cdot \frac{1}{3} r^3 \Big|_1^2 \\ &= \frac{14}{3} \end{aligned}$$

□

2. Use Green's Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = (\sqrt{x} + y^3, x^2 + \sqrt{y})$, and C consists of the arc of the curve $y = \sin x$ from $(0, 0)$ to $(\pi, 0)$ and the line segment from $(\pi, 0)$ to $(0, 0)$.

Solution. Notice that C has negative (clockwise) orientation. We will need to change the sign of our solution at the end. D is the region $\{(x, y) : 0 \leq x \leq \pi, 0 \leq y \leq \sin x\}$. Using Green's Theorem, we have

$$\begin{aligned} \int_C \mathbf{F} \cdot d\mathbf{r} &= \iint_D \left(\frac{\partial}{\partial x}(x^2 + \sqrt{y}) - \frac{\partial}{\partial y}(\sqrt{x} + y^3) \right) dA = \int_0^\pi \int_0^{\sin x} (2x - 3y^2) dy dx \\ &= \int_0^\pi (2xy - y^3) \Big|_0^{\sin x} dx = \int_0^\pi (2x \sin x - \sin^3 x) dx = \int_0^\pi (2x \sin x - \sin x(1 - \cos^2 x)) dx \\ &= \int_0^\pi (2x \sin x - \sin x + \sin x \cos^2 x) dx = \left(-2x \cos x + 2 \sin x + \cos x - \frac{1}{3} \cos^3 x \right) \Big|_0^\pi \\ &= 2\pi - 2 + \frac{2}{3} \end{aligned}$$

But since C had negative clockwise orientation, we must multiply our solution by negative one:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = -\frac{4}{3} - 2\pi.$$

□

3. Use Stokes' Theorem to evaluate $\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = x^2 z^2 \mathbf{i} + y^2 z^2 \mathbf{j} + xyz \mathbf{k}$ and S is the part of the paraboloid $z = x^2 + y^2$ that lies inside the cylinder $x^2 + y^2 = 4$.

Solution. We need to find a parametrization $\mathbf{r}(t)$ to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$. The closed curve of intersection of the paraboloid and cylinder is the circle $x^2 + y^2 = 4$ at $z = 4$, which can be parametrized by

$$\mathbf{r}(t) = (2 \cos t, 2 \sin t, 4), \quad 0 \leq t \leq 2\pi.$$

Then we have

$$\begin{aligned} \int_C \mathbf{F} \cdot d\mathbf{r} &= \int_0^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_0^{2\pi} (64 \cos^2 t, 64 \sin^2 t, 16 \cos t \sin t) \cdot (-2 \sin t, 2 \cos t, 0) dt \\ &= \int_0^{2\pi} (-128 \sin t \cos^2 t + 128 \sin^2 t \cos t) dt = 128 \left(\frac{1}{3} \cos^3 t + \frac{1}{3} \sin^3 t \right) \Big|_0^{2\pi} = 0. \end{aligned}$$

□

4. Consider the vector field $\mathbf{F}(x, y, z) = yz\mathbf{i} + 2xz\mathbf{j} + e^{xy}\mathbf{k}$, where C is circle $x^2 + y^2 = 16, z = 5$ oriented counterclockwise when viewed from above.

(a) Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$ by finding an appropriate parametrization vector $\mathbf{r}(t)$.

Solution. The parametrization for the circle $x^2 + y^2 = 16, z = 5$ is given by

$$\mathbf{r}(t) = (4 \cos t, 4 \sin t, 5), \quad 0 \leq t \leq 2\pi.$$

Then

$$\begin{aligned} \int_C \mathbf{F} \cdot d\mathbf{r} &= \int_0^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_0^{2\pi} (20 \sin t, 40 \cos t, e^{16 \cos t \sin t}) \cdot (-4 \sin t, 4 \cos t, 0) dt \\ &= \int_0^{2\pi} (-80 \sin^2 t + 160 \cos^2 t) dt = \int_0^{2\pi} (-40(1 - \cos 2t) + 80(1 + \cos 2t)) dt \\ &= \int_0^{2\pi} (40 + 120 \cos 2t) dt = (40t + 60 \sin 2t) \Big|_0^{2\pi} = 80\pi. \end{aligned}$$

□

(b) Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$ using Stokes' Theorem, and verify it is equal to your solution in part (a).

Solution. We need to evaluate $\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$. The normal to the surface is the normal to $z = 5$, which is $\mathbf{n} = \mathbf{k}$. The curl of \mathbf{F} is given by

$$\begin{aligned} \operatorname{curl} \mathbf{F} &= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ yz & 2xz & e^{xy} \end{vmatrix} = \mathbf{i} \begin{vmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2xz & e^{xy} \end{vmatrix} - \mathbf{j} \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ yz & e^{xy} \end{vmatrix} + \mathbf{k} \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ yz & 2xz \end{vmatrix} \\ &= \mathbf{i}(xe^{xy} - 2x) - \mathbf{j}(ye^{xy} - y) + \mathbf{k}(2z - z). \end{aligned}$$

Then $\operatorname{curl} \mathbf{F} \cdot \mathbf{n} = z$, but on our surface $z = 5$, hence

$$\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \iint_D z dA = \iint_D 5 dA = 5 \cdot \pi \cdot 4^2 = 80\pi.$$

□

5. Verify that the Divergence Theorem is true for the vector field $\mathbf{F}(x, y, z) = 3x\mathbf{i} + xy\mathbf{j} + 2xz\mathbf{k}$ where E is the cube bounded by the planes $x = 0, x = 1, y = 0, y = 1, z = 0, z = 1$.

Note: to verify the theorem is true you need to show that $\iint_S \mathbf{F} \cdot d\mathbf{S} = \iiint_E \operatorname{div} \mathbf{F} dV$; that is, you need to calculate both integrals and show they are equal.

Solution. We will evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$ on each of the different faces of the cube then take their sum.

On $x = 0$, $\mathbf{n} = -\mathbf{i}$, $D = \{(y, z) : 0 \leq y \leq 1, 0 \leq z \leq 1\}$ and

$$\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_D -3x dA = \iint_D 0 dA = 0.$$

On $x = 1$, $\mathbf{n} = \mathbf{i}$, $D = \{(y, z) : 0 \leq y \leq 1, 0 \leq z \leq 1\}$ and

$$\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_D 3x dA = \iint_D 3 dA = 3.$$

On $y = 0$, $\mathbf{n} = -\mathbf{j}$, $D = \{(x, z) : 0 \leq x \leq 1, 0 \leq z \leq 1\}$ and

$$\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_D -xy dA = \iint_D 0 dA = 0.$$

On $y = 0$, $\mathbf{n} = \mathbf{j}$, $D = \{(x, z) : 0 \leq x \leq 1, 0 \leq z \leq 1\}$ and

$$\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_D xy dA = \iint_D x dA = \int_0^1 \int_0^1 x dx dz = \frac{1}{2}.$$

On $z = 0$, $\mathbf{n} = -\mathbf{k}$, $D = \{(x, y) : 0 \leq x \leq 1, 0 \leq z \leq 1\}$ and

$$\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_D -2xzdA = \iint_D 0 dA = 0.$$

On $z = 1$, $\mathbf{n} = \mathbf{k}$, $D = \{(x, y) : 0 \leq x \leq 1, 0 \leq z \leq 1\}$ and

$$\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_D 2xzdA = \iint_D 2xdA = \int_0^1 \int_0^1 2x dx dy = 1.$$

Therefore

$$\iint_S \mathbf{F} \cdot d\mathbf{S} = 0 + 3 + 0 + \frac{1}{2} + 0 + 1 = \frac{9}{2}.$$

Now we will evaluate $\iiint_E \operatorname{div} \mathbf{F} dV$ where $E = \{(x, y, z) : 0 \leq x \leq 1, 0 \leq y \leq 1, 0 \leq z \leq 1\}$. The divergence of F is given by

$$\operatorname{div} \mathbf{F} = \frac{\partial}{\partial x}(3x) + \frac{\partial}{\partial y}(xy) + \frac{\partial}{\partial z}(2xz) = 3 + x + 2x = 3x + 3.$$

Therefore

$$\iiint_E \operatorname{div} \mathbf{F} dV = \iiint_E (3x + 3) dV = \int_0^1 \int_0^1 \int_0^1 (3x + 3) dx dy dz = \left(\frac{3}{2}x^2 + 3x \right) \Big|_0^1 = \frac{3}{2} + 3 = \frac{9}{2}.$$

□

6. Use the Divergence Theorem to calculate the surface integral $\iint \mathbf{F} \cdot d\mathbf{S}$; that is, calculate the flux of \mathbf{F} across S where $\mathbf{F}(x, y, z) = (\cos z + xy^2)\mathbf{i} + xe^{-z}\mathbf{j} + (\sin y + x^2z)\mathbf{k}$, and S is the surface of the solid bounded by the paraboloid $z = x^2 + y^2$ and the plane $z = 4$.

Solution. We will evaluate $\iiint_E \operatorname{div} \mathbf{F} dV$ where $E = \{(x, y, z) : x^2 + y^2 \leq z \leq 4\} = \{(r, \theta, z) : 0 \leq r \leq 2, 0 \leq \theta \leq 2\pi, r^2 \leq z \leq 4\}$. The divergence of F is given by

$$\operatorname{div} \mathbf{F} = \frac{\partial}{\partial x}(\cos z + xy^2) + \frac{\partial}{\partial y}(xe^{-z}) + \frac{\partial}{\partial z}(\sin y + x^2z) = y^2 + x^2.$$

Then

$$\begin{aligned} \iiint_E \operatorname{div} \mathbf{F} dV &= \iiint_E (x^2 + y^2) dV = \int_0^{2\pi} \int_0^2 \int_{r^2}^4 r^2 \cdot r dz dr d\theta = 2\pi \int_0^2 \int_0^{2\pi} r^3 dz dr = 2\pi \int_0^2 r^3 z \Big|_{z=r^2}^{z=4} dr \\ &= 2\pi \int_0^2 r^3 (4 - r^2) dr = 2\pi \int_0^2 (4r^3 - r^5) dr = 2\pi \left(r^4 - \frac{1}{6}r^6 \right) \Big|_0^2 = 2\pi \left(16 - \frac{64}{6} \right) \\ &= \frac{32\pi}{3}. \end{aligned}$$

□

7. Determine whether the sequence converges or diverges. If it converges, find the limit.

(a) $a_n = e^{1/n}$

Solution. Since e^x is a continuous function, we can pass the limit through the function:

$$\lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} e^{1/n} = \exp \left(\lim_{n \rightarrow \infty} \frac{1}{n} \right) = e^0 = 1.$$

Thus a_n converges to 1. \square

(b) $a_n = n \sin \left(\frac{1}{n} \right)$

Solution. Let $f(x) = x \sin \left(\frac{1}{x} \right)$. We will evaluate the limit as $x \rightarrow \infty$ using L'Hôpital's rule:

$$\lim_{x \rightarrow \infty} x \sin \left(\frac{1}{x} \right) = \lim_{x \rightarrow \infty} \frac{\sin \left(\frac{1}{x} \right)}{\frac{1}{x}} = \lim_{x \rightarrow \infty} \frac{\cos \left(\frac{1}{x} \right) \cdot -\frac{1}{x^2}}{-\frac{1}{x^2}} = \lim_{x \rightarrow \infty} \cos \left(\frac{1}{x} \right) = \cos \left(\lim_{x \rightarrow \infty} \frac{1}{x} \right) = \cos 0 = 1.$$

Notice we used the fact that cosine is continuous to pass the limit through the function. Thus a_n converges to 1. \square

(c) $a_n = 1 - (0.2)^n$

Solution.

$$\lim_{n \rightarrow \infty} (1 - (0.2)^n) = 1 - \lim_{n \rightarrow \infty} \left(\frac{1}{5} \right)^n = 1 - \lim_{n \rightarrow \infty} \frac{1}{5^n} = 1 - 0 = 1.$$

Thus a_n converges to 1. \square

(d) $a_n = n^2 e^{-n}$

Solution. Let $f(x) = x^2 e^{-x}$. We will evaluate the limit as $x \rightarrow \infty$ using L'Hôpital's rule:

$$\lim_{x \rightarrow \infty} \frac{x^2}{e^x} = \lim_{x \rightarrow \infty} \frac{2x}{e^x} = \lim_{x \rightarrow \infty} \frac{2}{e^x} = 0.$$

Thus a_n converges to 0. \square

(e) $a_n = \frac{(-1)^{n-1} n}{n^2 + 1}$

Solution. We will check to see if $\lim_{n \rightarrow \infty} |a_n|$ converges:

$$\lim_{n \rightarrow \infty} \left| \frac{(-1)^{n-1} n}{n^2 + 1} \right| = \lim_{n \rightarrow \infty} \frac{n}{n^2 + 1} = \lim_{n \rightarrow \infty} \frac{\frac{1}{n}}{1 + \frac{1}{n^2}} = 0.$$

Since $|a_n|$ converges to 0, by a theorem we have a_n also converges to 0. \square

(f) $a_n = \frac{\cos^2 n}{2^n}$

Solution. We will use Squeeze Theorem. Since $0 \leq \cos^2 n \leq 1$, then

$$0 \leq \frac{\cos^2 n}{2^n} \leq \frac{1}{2^n}.$$

Take the limit on each side as $n \rightarrow \infty$:

$$\lim_{n \rightarrow \infty} 0 \leq \lim_{n \rightarrow \infty} \frac{\cos^2 n}{2^n} \leq \lim_{n \rightarrow \infty} \frac{1}{2^n}$$

$$0 \leq \lim_{n \rightarrow \infty} \frac{\cos^2 n}{2^n} \leq 0.$$

Thus a_n converges to 0 by Squeeze Theorem. \square

$$(g) \ a_n = \frac{n^n}{n!}$$

Solution. Write out a general term of the sequence:

$$a_n = \frac{n \cdot n \cdot n \cdots n \cdot n}{1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n} = \frac{n}{1} \left(\frac{n}{2} \cdot \frac{n}{3} \cdots \frac{n}{n-1} \cdot \frac{n}{n} \right)$$

The rightmost term is $\frac{n}{n} = 1$. Since $n-1 < n$, then $\frac{n}{n-1} \geq 1$. In fact, each fraction in the parenthesis will be greater than 1 for large enough n :

$$a_n = \frac{n}{1} \left(\frac{n}{2} \cdot \frac{n}{3} \cdots \frac{n}{n-1} \cdot \frac{n}{n} \right) \geq n(1 \cdot 1 \cdots 1 \cdot 1) = n.$$

Therefore $a_n \geq n$, and since $\lim_{n \rightarrow \infty} n$ diverges, so does a_n . \square

8. Determine whether the series is convergent or divergent. State what test(s) you used to come to your conclusion.

$$(a) \ \sum_{n=1}^{\infty} \frac{1+3^n}{2^n}$$

Solution. We can rewrite the sum:

$$\sum_{n=1}^{\infty} \frac{1+3^n}{2^n} = \sum_{n=1}^{\infty} \left(\frac{1}{2^n} + \frac{3^n}{2^n} \right) = \sum_{n=1}^{\infty} \left(\frac{1}{2} \right)^n + \sum_{n=1}^{\infty} \left(\frac{3}{2} \right)^n.$$

Both of these series are geometric series. The series on the left with $r = \frac{1}{2}$ will converge, however the series on the right with $r = \frac{3}{2} > 1$ will diverge. Hence the series is divergent (by geometric series). \square

$$(b) \ \sum_{n=1}^{\infty} \frac{e^n}{n^2}$$

Solution. Let $f(x) = \frac{e^x}{x^2}$. We will evaluate the limit as $x \rightarrow \infty$ using L'Hôpital's rule:

$$\lim_{x \rightarrow \infty} \frac{e^x}{x^2} = \lim_{x \rightarrow \infty} \frac{e^x}{2x} = \lim_{x \rightarrow \infty} \frac{e^x}{2} = \infty.$$

The limit diverges, hence the series diverges by the Divergence Test. \square

$$(c) \ \sum_{n=1}^{\infty} n e^{-n}$$

Solution. Let $f(x) = x e^{-x}$. f is continuous, positive, decreasing ($f' < 0$), so we can apply the integral test:

$$\int_1^{\infty} x e^{-x} dx = (-x e^{-x} - e^{-x}) \Big|_1^{\infty} = -\lim_{x \rightarrow \infty} \frac{x+1}{e^x} - (-e^{-1} - e^{-1})$$

The limit converges using L'Hôpital's rule, therefore the integral converges. Since the integral converges, the series also converges by the Integral Test. \square

$$(d) \ \sum_{n=1}^{\infty} \frac{2}{n^{0.85}}$$

Solution. We can rewrite the sum:

$$\sum_{n=1}^{\infty} \frac{2}{n^{0.85}} = 2 \sum_{n=1}^{\infty} \frac{1}{n^{0.85}}.$$

Since $p = 0.85 < 1$, this series diverges by the p -Series Test. \square

$$(e) \sum_{n=1}^{\infty} \frac{1 + \sin n}{10^n}$$

Solution. Since $\sin n \leq 1$, then $1 + \sin n \leq 2$, and we have

$$\frac{1 + \sin n}{10^n} \leq \frac{2}{10^n}.$$

The series

$$\sum_{n=1}^{\infty} \frac{2}{10^n} = 2 \sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^n$$

is a convergent geometric series with $r = \frac{1}{10} < 1$. Therefore $\sum_{n=1}^{\infty} \frac{1 + \sin n}{10^n}$ converges by the Comparison Test. \square

$$(f) \sum_{n=1}^{\infty} \frac{n+1}{n\sqrt{n}}$$

Solution. Since $n+1 > n$, then

$$\frac{n+1}{n\sqrt{n}} > \frac{n}{n\sqrt{n}} \Rightarrow \frac{n+1}{n\sqrt{n}} > \frac{1}{\sqrt{n}}.$$

The series

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

is a divergent p -series with $p = \frac{1}{2} < 1$. Therefore $\sum_{n=1}^{\infty} \frac{n+1}{n\sqrt{n}}$ is divergent by the Comparison Test. \square

$$(g) \sum_{n=1}^{\infty} \frac{(-1)^n n}{10^n}$$

Proof. We will use the Alternating Series Test. Let $a_n = \frac{n}{10^n}$. We need to show that a_n forms a decreasing sequence. Let $f(x) = \frac{x}{10^x}$, we will show that $f' < 0$:

$$f'(x) = \frac{10^x(x)' - x(10^x)'}{10^{2x}} = \frac{10^x - x \ln 10 (10)^x}{10^{2x}} = \frac{10^x(1 - x \ln 10)}{10^{2x}} = \frac{1 - x \ln 10}{10^x} < 0$$

for $x > 1$. Thus a_n is decreasing.

Now we need to show a_n converges to 0. We will do this by using L'Hôpital's Rule to show that $f(x)$ converges to 0 as $x \rightarrow \infty$:

$$\lim_{x \rightarrow \infty} \frac{x}{10^x} = \lim_{x \rightarrow \infty} \frac{1}{10^x \ln 10} = 0.$$

Thus a_n converges to 0.

Therefore $\sum_{n=1}^{\infty} \frac{(-1)^n n}{10^n}$ converges by the Alternating Series Test. \square

$$(h) \sum_{n=1}^{\infty} \cos\left(\frac{\pi}{n}\right)$$

Solution. Since cosine is continuous,

$$\lim_{n \rightarrow \infty} \cos\left(\frac{\pi}{n}\right) = \cos\left(\lim_{n \rightarrow \infty} \frac{\pi}{n}\right) = \cos 0 = 1.$$

Since the limit is not equal to zero, then the series diverges by the Divergence Test. \square

$$(i) \sum_{n=1}^{\infty} \frac{(-10)^n}{n!}$$

Solution. Let $a_n = \frac{(-10)^n}{n!}$. We will use the Ratio Test:

$$\lim_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \rightarrow \infty} \left| \frac{(-10)^{n+1}}{(n+1)!} \cdot \frac{n!}{(-10)^n} \right| = \lim_{n \rightarrow \infty} \left| \frac{-10}{n+1} \right| = \lim_{n \rightarrow \infty} \frac{10}{n+1} = 0 < 1,$$

therefore the series is convergent by the Ratio Test. \square

$$(j) \sum_{n=1}^{\infty} \left(\frac{n^2 + 1}{2n^2 + 1} \right)^n$$

Solution. Let $a_n = \left(\frac{n^2 + 1}{2n^2 + 1} \right)^n$. We will use the Root Test:

$$\lim_{n \rightarrow \infty} \sqrt[n]{|a_n|} = \lim_{n \rightarrow \infty} \frac{n^2 + 1}{2n^2 + 1} = \frac{1}{2} < 1,$$

therefore the series is convergent by the Root Test. \square

9. Use the Integral test to prove that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

Solution. Let $f(x) = \frac{1}{x}$. f is continuous, positive, decreasing on $[1, \infty)$, so we can apply the Integral Test. The integral

$$\int_1^{\infty} \frac{1}{x} dx = \ln x \Big|_1^{\infty} = \lim_{x \rightarrow \infty} x - \ln 1$$

diverges, hence by the Integral Test the harmonic series diverges. \square