
Math 6B: Series “Quiz” Solutions
April 21, 2016

Determine if the following series converge or diverge. State what test you used to come to your conclusion.
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converges by the p-Series test since p = 1.2 > 1. Therefore our series converges by the Comparison
Test.
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Therefore the series diverges by the Integral Test.
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Proof. The series diverges by the p-Series test since p = 1
5 ≤ 1.
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Proof. The series diverges by the Divergence Test since
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Proof. This is a geometric series since each term is a multiple of the last. The ratio is r = 2
3 (divide

the second term by the first term, the third term by the second term, etc.). The sum can therefore be
written as
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Since |r| < 1, the series converges, and it converges to
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Proof. The sequence converges by the p-Series test since p = 5 > 1.
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Proof. Since n > 1, then n2 > 1. Therefore
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is divergent (it is a harmonic series), by the Comparison

Test our series is divergent.
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