

Math 6B: Series “Quiz” Solutions

April 21, 2016

Determine if the following series converge or diverge. State what test you used to come to your conclusion.

1. $\sum_{n=1}^{\infty} \frac{\arctan n}{n^{1.2}}$

Proof. Since $\arctan n \leq \frac{\pi}{2}$, we have

$$\frac{\arctan n}{n^{1.2}} \leq \frac{\frac{\pi}{2}}{n^{1.2}}.$$

The series

$$\sum_{n=1}^{\infty} \frac{\frac{\pi}{2}}{n^{1.2}} = \frac{\pi}{2} \sum_{n=1}^{\infty} \frac{1}{n^{1.2}}$$

converges by the p -Series test since $p = 1.2 > 1$. Therefore our series converges by the Comparison Test. \square

2. $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$

Proof. Consider the function $f(x) = \frac{1}{x \ln x}$ on the interval $[2, \infty)$. Using the substitution $u = \ln x, du = \frac{1}{x} dx$, we see that the integral diverges:

$$\int_2^{\infty} \frac{1}{x \ln x} dx = \int_{\ln 2}^{\infty} \frac{1}{u} du = \ln u \Big|_{\ln 2}^{\infty} = \infty$$

Therefore the series diverges by the Integral Test. \square

3. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}}$

Proof. The series diverges by the p -Series test since $p = \frac{1}{5} \leq 1$. \square

4. $\sum_{n=1}^{\infty} \arctan n$

Proof. The series diverges by the Divergence Test since

$$\lim_{n \rightarrow \infty} \arctan n = \frac{\pi}{2} \neq 0.$$

\square

5. $3 + 2 + \frac{4}{3} + \frac{8}{9} + \dots$

Proof. This is a geometric series since each term is a multiple of the last. The ratio is $r = \frac{2}{3}$ (divide the second term by the first term, the third term by the second term, etc.). The sum can therefore be written as

$$\sum_{n=1}^{\infty} 3 \left(\frac{2}{3} \right)^{n-1}$$

Since $|r| < 1$, the series converges, and it converges to $\frac{3}{1 - \frac{2}{3}} = \frac{3}{\frac{1}{3}} = 9$. \square

$$6. \sum_{n=1}^{\infty} \frac{1}{n^5}$$

Proof. The sequence converges by the p -Series test since $p = 5 > 1$. \square

$$7. \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 1}}$$

Proof. Since $n > 1$, then $n^2 > 1$. Therefore

$$n^2 + 1 \leq n^2 + n^2 \Rightarrow \sqrt{n^2 + 1} \leq \sqrt{n^2 + n^2}.$$

Thus

$$\frac{1}{\sqrt{n^2 + 1}} \geq \frac{1}{\sqrt{n^2 + n^2}}.$$

Since $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + n^2}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{2n^2}} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{1}{n}$ is divergent (it is a harmonic series), by the Comparison Test our series is divergent. \square