Math 6B: Series “Quiz” Solutions
April 21, 2016

Determine if the following series converge or diverge. State what test you used to come to your conclusion.
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Proof. Since arctann < 7, we have
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converges by the p-Series test since p = 1.2 > 1. Therefore our series converges by the Comparison
Test. O
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Proof. Consider the function f(z) =

1

o OB the interval [2, 00). Using the substitution v = Inz, du =
zlnx
%dx, we see that the integral diverges:
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Therefore the series diverges by the Integral Test. O
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Proof. The series diverges by the p-Series test since p =
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Proof. The series diverges by the Divergence Test since
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Proof. This is a geometric series since each term is a multiple of the last. The ratio is r = % (divide
the second term by the first term, the third term by the second term, etc.). The sum can therefore be

written as
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Since |r| < 1, the series converges, and it converges to 2=
3
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Proof. The sequence converges by the p-Series test since p =5 > 1. O
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Proof. Since n > 1, then n? > 1. Therefore

n2+1<n?+n? = Vn2+1<n2+n2

Thus
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Since E = E = — E — is divergent (it is a harmonic series), by the Comparison
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Test our series is divergent. O



