

Math 33A – Week 5

Written by Victoria Kala
April 30, 2019

Name: KEY

1. Let $T(\mathbf{x}) = \begin{pmatrix} 1 & -3 & 0 & -5 \\ 0 & 0 & 1 & 2 \end{pmatrix} \mathbf{x}$.

(a) Find $\text{im}(T)$ and $\ker(T)$.

$$\left(\begin{array}{cccc|c} 1 & -3 & 0 & -5 & 0 \\ 0 & 0 & 1 & 2 & 0 \end{array} \right) \text{ already in rref.}$$

↑
↑
↑
↑
free free free
1st and 3rd columns
span $\text{im } T$

$$\text{im } T = \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

x_2 free, $x_2 = t$
 x_4 free, $x_4 = s$

$$x_1 - 3x_2 - 5x_4 = 0 \rightarrow x_1 = 3x_2 + 5x_4$$

$$x_3 + 2x_4 = 0 \rightarrow x_3 = -2x_4$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 3t + 5s \\ t \\ -2s \\ s \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \end{pmatrix} t + \begin{pmatrix} 5 \\ 0 \\ -2 \\ 1 \end{pmatrix} s$$

$$\ker T = \text{span} \left\{ \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \\ -2 \\ 1 \end{pmatrix} \right\}$$

(b) Verify the rank-nullity theorem for this transformation.

$$\begin{array}{ll} \text{rank} = 2 & \text{rank} + \text{nullity} = 4 = \# \text{ of columns of } \begin{pmatrix} 1 & -3 & 0 & -5 \\ 0 & 0 & 1 & 2 \end{pmatrix} \checkmark \\ \text{nullity} = 2 & \end{array}$$

(c) Are there any vectors $\mathbf{y} \in \mathbb{R}^2$ such that $\mathbf{y} \notin \text{im}(T)$? *Remark: This illustrates that $\text{im } T = \mathbb{R}^2$

One way: for $\vec{y} \in \text{im } T$ means $T(\vec{x}) = \vec{y}$ for some \vec{x}

$$\Rightarrow \left(\begin{array}{cccc|c} 1 & -3 & 0 & -5 & y_1 \\ 0 & 0 & 1 & 2 & y_2 \end{array} \right) \text{ Q: is it possible for this system to have no solution?}$$

A: No, this system always has a solution no matter the value of \vec{y}

No, no \vec{y} such that $\vec{y} \notin \text{im } T$

Another way: in (a) we find $\text{im } T = \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$

For $\vec{y} \in \text{im } T$ means there are a, b s.t. $a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \vec{y}$

$$\Rightarrow \left(\begin{array}{c|c} 1 & y_1 \\ 0 & y_2 \end{array} \right) \text{ Q: is it possible for this system to have no solution?}$$

A: no, this system always has a solution no matter the value of \vec{y} .

No, no \vec{y} such that $\vec{y} \notin \text{im } T$

2. Recall that $T(\mathbf{x}) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x}$ is the transformation that projects $\mathbf{x} = (x, y)$ onto the y -axis.

(a) Without solving explicitly, what do you expect $\text{im}(T)$ and $\ker(T)$ to be? (You don't need to use set notation here, you can write a short description about what you think they will be.)

$\text{im } T = \text{all outputs of } T(\vec{x}) = y\text{-axis}$

$\ker T = \text{all inputs } \vec{x} \text{ s.t. } T(\vec{x}) = \vec{0} \Rightarrow \ker T = x\text{-axis}$

(b) Solve $\text{im}(T)$ and $\ker(T)$ explicitly. Do these match your intuition in (a)?

$$\left(\begin{array}{cc|c} 0 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right) \rightarrow \left(\begin{array}{cc|c} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$$

free
↑
2nd column of
original matrix
span $\text{im } T$

$$\text{im } T = \text{span} \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

↑
this is the y -axis

x_1 free, $x_1 = t$
 $x_2 = 0$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} t \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} t$$

$$\ker T = \text{span} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$$

↑
this is the x -axis!

(c) Verify the rank-nullity theorem for this transformation.

$$\begin{array}{ll} \text{rank} = 1 & \text{rank} + \text{nullity} = 2 = \# \text{ of columns of } \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \\ \text{nullity} = 1 & \end{array}$$

(d) Find a vector \mathbf{y} such that $\mathbf{y} \notin \text{im}(T)$. * answers will vary

$\vec{y} \in \text{im } T$ means $T(\vec{x}) = \vec{y}$ for some \vec{x}

$$\left(\begin{array}{cc|c} 0 & 0 & y_1 \\ 0 & 1 & y_2 \end{array} \right) \quad \begin{array}{l} \text{If } y_1 \text{ is a nonzero } \# \text{ then} \\ \text{this system has no solution!} \end{array}$$

e.g. $\vec{y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ since the vector $\vec{y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \notin \text{im } T$ since $\left(\begin{array}{cc|c} 0 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right)$ has no solution

(e) Is $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ invertible? no, $\det \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 0 \cdot 1 - 0 \cdot 0 = 0$

3. Recall that $T(\mathbf{x}) = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \vec{x}$ is the transformation that rotates \mathbf{x} by $\frac{\pi}{4}$ radians and stretches the rotated vector by a factor of $\sqrt{2}$.

(a) Without solving explicitly, what do you expect $\text{im}(T)$ and $\text{ker}(T)$ to be? (You don't need to use set notation here, you can write a short description about what you think they will be.)

$\text{im } T = \text{all outputs} = \mathbb{R}^2$ since if we rotate \mathbb{R}^2 by $\frac{\pi}{4}$ and scale by $\sqrt{2}$ we still get \mathbb{R}^2

$$\text{ker } T = \text{all inputs } \vec{x} \text{ s.t. } T(\vec{x}) = \vec{0} \Rightarrow \text{ker } T = \{ \vec{0} \}$$

(b) Solve $\text{im}(T)$ and $\text{ker}(T)$ explicitly. Do these match your intuition in (a)?

$$\left(\begin{array}{cc|c} 1 & -1 & 0 \\ 1 & 1 & 0 \end{array} \right) \xrightarrow{R_1 + R_2 \rightarrow R_2} \left(\begin{array}{cc|c} 1 & -1 & 0 \\ 0 & 2 & 0 \end{array} \right) \xrightarrow{\frac{1}{2}R_2 \rightarrow R_2} \left(\begin{array}{cc|c} 1 & -1 & 0 \\ 0 & 1 & 0 \end{array} \right) \xrightarrow{R_1 + R_2 \rightarrow R_1} \left(\begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right) \quad \begin{array}{l} \text{this system has the unique solution} \\ (\vec{x}_1, \vec{x}_2) = (0, 0) \end{array}$$

1st and 2nd columns of original matrix span $\text{im } T$

$\text{im } T = \text{span} \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$

$\Rightarrow \boxed{\text{ker } T = \{ \vec{0} \}}$

(c) Verify the rank-nullity theorem for this transformation.

$$\begin{array}{ll} \text{rank} = 2 & \text{rank} + \text{nullity} = 2 = \# \text{ of columns of } \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \\ \text{nullity} = 0 & \end{array}$$

(d) Are there any vectors $\mathbf{y} \in \mathbb{R}^2$ such that $\mathbf{y} \notin \text{im}(T)$? * Remark: This illustrates that $\text{im } T = \mathbb{R}^2$

One way $\vec{y} \in \text{im } T$ means $T(\vec{x}) = \vec{y}$ for some \vec{x}

$$\left(\begin{array}{cc|c} 1 & -1 & y_1 \\ 1 & 1 & y_2 \end{array} \right) \xrightarrow{\text{row operations}} \left(\begin{array}{cc|c} 1 & 0 & \text{shift} \\ 0 & 1 & \end{array} \right)$$

This system always has a solution $\Rightarrow \boxed{\text{No } \vec{y} \text{ s.t. } \vec{y} \notin \text{im } T}$

Another way in (b), $\text{im } T = \text{span} \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$

$$\vec{y} \in \text{im } T \text{ means there are } a, b \text{ s.t. } a \begin{pmatrix} 1 \\ 1 \end{pmatrix} + b \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \vec{y}$$

$$\left(\begin{array}{cc|c} 1 & -1 & y_1 \\ 1 & 1 & y_2 \end{array} \right) \leftarrow \text{this system always has a solution after doing row operations} \Rightarrow \boxed{\text{No } \vec{y} \text{ s.t. } \vec{y} \notin \text{im } T}$$

(e) Is $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ invertible? yes, $\det \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = 1 \cdot 1 - (-1) \cdot 1 = 1 + 1 = 2 \neq 0$

4. The invertibility of a square matrix is related to its rank, nullity, kernel, and image. The matrix $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ in Exercise 2 is not invertible, but $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ in Exercise 3 is invertible. Fill in the following statements below (you can use Exercises 2 and 3 for reference):

- (a) If A is an $n \times n$ matrix and $\text{rank}(A) = \underline{n}$, then $\text{im}(A) = \mathbb{R}^n$.
- (b) If A is an $n \times n$ matrix and $\text{rank}(A) = n$, then $\text{nullity}(A) = \underline{0}$.
- (c) If A is an $n \times n$ matrix and $\text{nullity}(A) = \underline{0}$, then $\text{ker}(A) = \{\mathbf{0}\}$.
- (d) If A is an $n \times n$ matrix and $\text{ker}(A) = \underline{\{\mathbf{0}\}}$, then A is invertible.
- (e) If A is an $n \times n$ matrix and $\text{rank}(A) \neq \underline{n}$, A is not invertible.
- (f) If A is an $n \times n$ matrix and $\text{nullity}(A) \neq \underline{0}$, A is not invertible.
- (g) If A is an $n \times n$ matrix and $\text{ker}(A) \neq \{\mathbf{0}\}$, A is not invertible.