

Math 33B Worksheet 7 (Phase Plane for Linear Systems)

Name: _____ Score: _____

Circle the name of your TA: Ziheng Nicholas Victoria

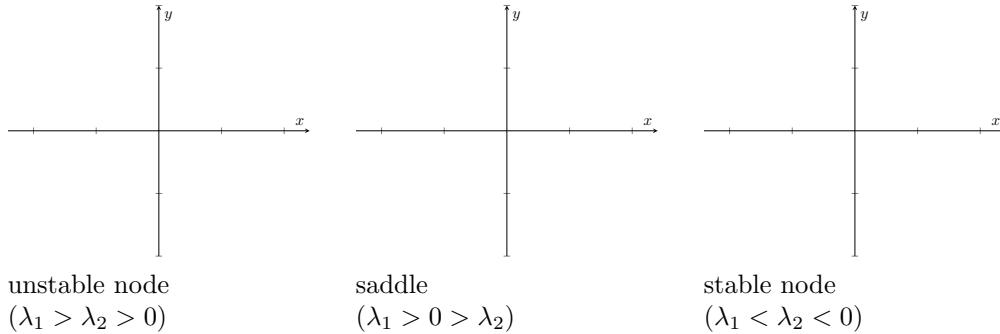
Circle the day of your discussion: Tuesday Thursday

1. The linear system

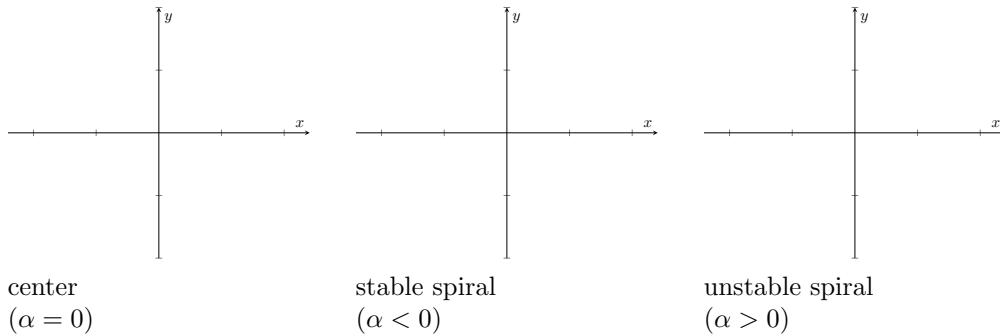
$$\begin{aligned} x' &= ax + by \\ y' &= cx + dy \end{aligned}$$

can be written in matrix form $\mathbf{x}' = A\mathbf{x}$ where $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. We can use the eigenvalues and eigenvectors of A to sketch the phase plane/portrait for the system. Below are the possible behaviors for linear systems with nonzero eigenvalues, sketch a plausible phase portrait for each behavior.

(i) Real, distinct eigenvalues ($\lambda_1 \neq \lambda_2$)

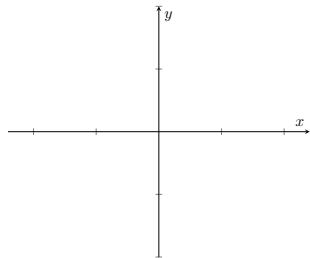


(ii) Complex eigenvalues ($\lambda = \alpha \pm \beta i$)



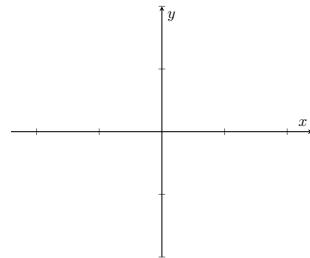
Question: How do we determine whether the center or spiral is clockwise or counter-clockwise?

(iii) Real repeated eigenvalues



star node

$$\text{Occurs when } A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$



degenerate node

$$\text{Occurs when } A = \begin{pmatrix} \lambda & b \\ 0 & \lambda \end{pmatrix}$$

Question: When are each of these nodes stable or unstable?

2. Consider the linear system

$$\begin{aligned} x' &= x + y \\ y' &= 4x - 2y. \end{aligned}$$

(a) Rewrite this system in matrix form $\mathbf{x}' = A\mathbf{x}$. Find the eigenvalues of A and use these to classify the behavior and stability of the system.

(b) Find the eigenvectors of A and sketch the phase portrait of the system.

3. Consider the linear system

$$\begin{aligned}x' &= 4x - y \\y' &= 2x + y.\end{aligned}$$

(a) Rewrite this system in matrix form $\mathbf{x}' = A\mathbf{x}$. Find the eigenvalues of A and use these to classify the behavior and stability of the system.

(b) Find the eigenvectors of A and sketch the phase portrait of the system.

4. Consider the linear system

$$\begin{aligned}x' &= x - y \\y' &= x + y.\end{aligned}$$

(a) Rewrite this system in matrix form $\mathbf{x}' = A\mathbf{x}$. Find the eigenvalues of A and use these to classify the behavior and stability of the system.

(b) The eigenvalues in (a) are complex with nonzero real part. Come up with a way to determine whether the spiral is clockwise or counterclockwise, then sketch the phase portrait of the system.

5. **Simple Harmonic Oscillator.** The vibrations of a mass hanging from a linear spring are governed by the linear differential equation

$$mx'' + kx = 0$$

where m is the mass, k is the spring constant, and x is the displacement of the mass from the equilibrium. We can rewrite this second order differential equation as the first order system

$$\begin{aligned}x' &= v \\v' &= -\omega^2 x\end{aligned}$$

where $\omega^2 = k/m$. Plot the phase portrait for this system. What do these closed orbits represent?