Math 33B Worksheet 7 (Phase Plane for Linear Systems)
Name: K’EY, Score: __

Circle the name of your TA:  Ziheng Nicholas Victoria
Circle the day of your discussion: = Tuesday  Thursday

1. The linear system

' = ax + by
y =cx+dy
. . . b .
can be written in matrix form x’ = Ax where A = Z d) We can use the eigenvalues and

eigenvectors of A to sketch the phase plane/portrait for the system. Below are the possible
behaviors for linear systems with nonzero eigenvalues, sketch a plausible phase portrait for

each behavior.

(i) Real, distinct eigenvalues (A1 # A2)
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(ii) Complex eigenvalues (A = « + 5i)
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center stable spiral unstable spiral
(a=0) (< 0) (> 0)

Question: How do we determine whether the center or spiral is clockwise or counter-

clockwise?



(iii) Real repeated eigenvalues

Y

star node

Occurs when A = <

A0
0 A

Question: When are each of these nodes stable or unstable?

2. Consider the linear system

s

degenerate node

Ab
Occurs when A = (0 A)

¥=x+y

y =4z — 2y.

(a) Rewrite this system in matrix form x’ = Ax. Find the eigenvalues of A and use these to
classify the behavior and stability of the system.

R=(da)%

(b) Find the eigenvectors of A and sketch the phase portrait of the system.
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3. Consider the linear system

2 =4z —y

y =2z +y.

(a) Rewrite this system in matrix form x’ = Ax. Find the eigenvalues of A and use these to

classify the behavior and stability of the system.
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(b) Find the eigenvectors of A and sketch the phase portrait of the system.

j \

\ = 4-3 -1 (o) L[ ! "|I0 X=% = dominonk
\ 3 (2 ,—3 O Z -2 O (l> W'Ve"’w
A=2: [ 42 - ‘O>A 2 - Io K=2x1 % (2'>
2 1210 -1 [0
4. Consider the linear system
¥=x—y
y' =z+y.

(a) Rewrite this system in matrix form x’ = Ax. Find the eigenvalues of A and use these to

classify the behavior and stability of the system.
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(b) The eigenvalues in (a) are complex with nonzero real part. Come up with a way to
determine whether the spiral is clockwise or counterclockwise, then sketch the phase
portrait of the system.
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5. Simple Harmonic Oscillator. The vibrations of a mass hanging from a linear spring are
governed by the linear differential equation

Cownterclovunk e

ma” +kx =0

where m is the mass, k is the spring constant, and x is the displacement of the mass from the
equilibrium. We can rewrite this second order differential equation as the first order system

r =V

where w? = k/m. Plot the phase portrait for this system. What do these closed orbits
represent?
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