

Math 33B Worksheet 9 (Review)

Name: _____ Score: _____

Circle the name of your TA: Ziheng Nicholas Victoria

Circle the day of your discussion: Tuesday Thursday

Directions: For Exercises 1-9, match its type using A-H. No term is used twice. Then solve Exercises 1-9.

A. First order separable equation	F. Second order nonhomogeneous equation, undetermined coefficients
B. First order linear equation	G. Second order nonhomogeneous equation, variation of parameters
C. Exact equation	H. Two dimensional homogeneous linear systems and phase portraits
D. Second order homogeneous equation	I. Higher order homogeneous linear systems
E. One dimensional phase portraits and stability	

1. _____ Solve $y'' - 2y' + y = e^t \arctan t$.
2. _____ Find the general solution of $(1+x)y' - xy = x + x^2$.
3. _____ Solve the following differential equations.

(a) $2y'' - 5y' - 3y = 0$	(b) $y'' - 10y' + 25 = 0$	(c) $y'' + 4y' + 7y = 0$
---------------------------	---------------------------	--------------------------
4. _____ Find an explicit solution of the given initial value problem: $x^2 \frac{dy}{dx} = y - xy$, $y(-1) = -1$.
5. _____ For each of the following systems, (i) Draw a phase portrait for the system, (ii) classify the stability of $(0,0)$, (iii) Find the general solution.

(a) $\mathbf{X}' = \begin{pmatrix} 2 & 8 \\ -1 & -2 \end{pmatrix} \mathbf{X}$	(b) $\mathbf{X}' = \begin{pmatrix} 3 & -18 \\ 2 & -9 \end{pmatrix} \mathbf{X}$	(c) $\frac{dx}{dt} = 2x + 3y$ $\frac{dy}{dt} = 2x + y$
---	--	---
6. _____ Solve $y'' - 2y' - 3y = 4x - 5 + 6e^{2x}$.
7. _____ Solve $\frac{dy}{dx} = \frac{xy^2 - \cos x \sin x}{y(1 - x^2)}$, $y(0) = 2$.
8. _____ Consider the differential equation $\frac{dP}{dt} = P(a - bP)$ where a, b are positive constants.
 - (a) Find the equilibrium points.
 - (b) Draw a one-dimensional phase portrait, use this to classify the stability of the equilibrium points found in (a).
 - (c) What is the expected behavior of $P(t)$ as $t \rightarrow \infty$?
9. _____ Solve $\mathbf{X}' = \begin{pmatrix} 1 & 1 & 4 \\ 0 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix} \mathbf{X}$, $\mathbf{X}(0) = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$.