

Math 31AL Practice Problems I

Written by Victoria Kala

vtkala@math.ucla.edu

Last updated October 23, 2019

1. Consider the function

$$f(x) = \begin{cases} 1-x, & x < 0 \\ x^2, & 0 \leq x \leq 2 \\ 4, & x \geq 2 \end{cases}$$

(a) Sketch the graph of $f(x)$.
(b) Evaluate the following limits:

i. $\lim_{x \rightarrow 0^-} f(x)$

ii. $\lim_{x \rightarrow 0^+} f(x)$

iii. $\lim_{x \rightarrow 0} f(x)$

iv. $\lim_{x \rightarrow 1^-} f(x)$

v. $\lim_{x \rightarrow 1^+} f(x)$

vi. $\lim_{x \rightarrow 1} f(x)$

vii. $\lim_{x \rightarrow 2^-} f(x)$

viii. $\lim_{x \rightarrow 2^+} f(x)$

ix. $\lim_{x \rightarrow 2} f(x)$

(c) Is f continuous at $x = 0$, $x = 1$, or $x = 2$?
(d) Is f a continuous function?

2. Find the constant k such that the following function is continuous:

$$f(x) = \begin{cases} kx^2 + 2x + 1, & 0 \leq x \leq 4 \\ 2 - kx, & x > 4 \end{cases}$$

3. Evaluate the following limits:

(a) $\lim_{z \rightarrow 8} z^{2/3}$

(b) $\lim_{x \rightarrow -3} x^{-2} + 2x$

(c) $\lim_{u \rightarrow 4} \frac{\sqrt{u} - 1}{\sqrt{u+5} + 1}$

(d) $\lim_{x \rightarrow -1} \frac{x^2 + 4x + 3}{2x^2 + x - 1}$

(e) $\lim_{x \rightarrow 4} \frac{\sqrt{x} - 2}{x - 4}$

(f) $\lim_{x \rightarrow 1} \left(\frac{6}{x^2 - 1} - \frac{3}{x - 1} \right)$

(g) $\lim_{t \rightarrow 0} \frac{(1 - \cos(4t)) \sin(3t)}{t^2}$

(h) $\lim_{x \rightarrow \frac{\pi}{2}} \frac{2x}{\sin x}$

(i) $\lim_{x \rightarrow 0} \frac{\csc 2x}{\csc 5x}$

(j) $\lim_{x \rightarrow \infty} \frac{3x^2 - 5x + 10}{21 - 6x^2 + x}$

(k) $\lim_{x \rightarrow \infty} \frac{e^{2x} + 1}{e^{2x} - 1}$

(l) $\lim_{x \rightarrow -\infty} \frac{8x + 7}{5 + x^2}$

4. Find the horizontal asymptotes for

$$f(x) = \frac{\sqrt{4x^2 + x + 1}}{3x - 1}$$

5. Use Squeeze Theorem to evaluate the limit

$$\lim_{x \rightarrow 0} (4^x - 1) \sin^2 \left(\frac{1}{x} \right)$$

6. Use Intermediate Value Theorem to show that $x^2 - 10 \sin x + 4 = 0$ has a solution on the interval $[0, \frac{\pi}{4}]$.

7. Let $f(x) = x^2 - x + 2$

- Find $f(-1)$.
- Find $f(-1 + h)$.
- Using (a) and (b), simplify $\frac{f(-1 + h) - f(-1)}{h}$.
- Now take the limit of what you found in (c), i.e. $\lim_{h \rightarrow 0} \frac{f(-1 + h) - f(-1)}{h}$.
- What does the limit in (d) represent?

8. For $f(x) = x^{-1/2}$, use the formal definition of a derivative to show that $f'(x) = -\frac{1}{2}x^{-3/2}$.

9. Find the tangent line of $f(x) = x^2 + 5x - \sin x + 1$ at $x = 0$.

10. Find the derivatives of the following functions:

- $f(x) = \cos x - x^{100}$
- $g(x) = x \sin x$
- $h(x) = \frac{x^2}{\cos x}$

11. Circle whether the statement is true or false:

- T F In the square root $\sqrt{x^2 + 4}$, we can split up the square root, i.e. $\sqrt{x^2 + 4} = \sqrt{x^2} + \sqrt{4}$
- T F In the square root $\sqrt{4x^2}$, we can split up the square root, i.e. $\sqrt{4x^2} = \sqrt{4}\sqrt{x^2}$
- T F $(x + 2)^2 = x^2 + 2^2$
- T F $(x + 2)^2 = x^2 + 4x + 4$
- T F In the fraction $\frac{4}{x + 4}$, we can cancel out the 4's, i.e. $\frac{4}{x + 4} = \frac{1}{x}$
- T F In the fraction $\frac{4}{4(x + 1)}$, we can cancel out the 4's, i.e. $\frac{4}{4(x + 1)} = \frac{1}{x + 1}$
- T F When adding or subtracting fractions, we need to make sure they have a common denominator.
- T F When multiplying or dividing fractions, we need to make sure they have a common denominator.