

Math 31AL Practice Problems II

Written by Victoria Kala

vtkala@math.ucla.edu

Last updated November 21, 2019

1. Use chain rule to find the derivative of the following functions:

(a) $f(x) = \cos^2(x^3 + 1)$

(b) $g(x) = \sqrt{x + \sin x}$

2. Find the equation of the tangent line at the given point using implicit differentiation:

$$2x^{1/2} + 4y^{-1/2} = xy, \quad (1, 4)$$

3. Let $f(x) = 2x^2 - 8x + 7$.

(a) Find the local extrema of $f(x)$.

(b) Find the absolute extrema of $f(x)$ on the interval $[0, 5]$.

(c) Find the absolute extrema of $f(x)$ on the interval $[-4, 1]$.

4. Find all critical points of f and use the First or Second Derivative Test decide if they are local minima or maxima:

$$f(x) = \frac{x^2}{x+1}$$

5. Let $f(x) = x^6 - 9x^4$.

(a) Find the intercepts of f .

(b) Find the critical points of f and intervals where f is increasing or decreasing.

(c) Find the intervals where f is concave up or concave down. Does f have any inflection points?

(d) Sketch the graph of $f(x)$.

6. Let $f(x) = \frac{x-2}{x-3}$.

(a) Find the intercepts of f .

(b) Find the vertical asymptotes of f .

(c) Find the horizontal asymptotes of f .

(d) Find the critical points of f and intervals where f is increasing or decreasing.

(e) Find the intervals where f is concave up or concave down. Does f have any inflection points?

(f) Sketch the graph of $f(x)$.

7. Victoria wishes to enclose a rectangular garden of area 1000m^2 . One side will be enclosed with a brick wall costing \$90/m, the other three sides will be enclosed with a metal fence costing \$30/m. What dimensions of the garden minimize the total cost?

8. Let $f(x) = 9 - x^2$.

- (a) Sketch the graph of $f(x)$ on the interval $[0, 3]$.
- (b) Sketch the rectangles corresponding to L_3 , then calculate L_3 . Is this an underestimate or overestimate of the area under $f(x)$?
- (c) Sketch the rectangles corresponding to R_3 , then calculate R_3 . Is this an underestimate or overestimate of the area under $f(x)$?
- (d) Calculate a formula for R_N .
- (e) By taking the limit as $N \rightarrow \infty$ of your answer in (d), calculate the area under $f(x)$ on the interval $[0, 3]$.