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1. Solve the linear system x0 = Ax where

(a) A =

✓
0 1
�1 0

◆

(b) A =

✓
0 2
3 1

◆

(c) A =

✓
2 4
�1 6

◆
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2. Recall the equation of a mass-spring system:

mx00(t) + µx0(t) + kx(t) = F (t) (1)

(a) For F (t) = 0, solve the system using second order methods. (Note: There are three
types of solutions with di↵erent damping coe�cients.)

(b) Using the substitution x0(t) = v(t), we can rewrite (1) as a 2D linear system:

x0(t) = v(t)

v0(t) = � k

m
x(t)� µ

m
v(t) +

F (t)

m
,

which can then be written in matrix form
✓
x
v

◆0
=

✓
0 1

� k
m � µ

m

◆✓
x
v

◆

Find the solution to this system in the overdamped case , i.e. when µ2� 4km > 0, when
F (t) = 0. Is this the same solution as the overdamped case you found in (a)?
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