

Math 33B: Higher Dimensional Systems

Written by Victoria Kala

November 26, 2019

Name: _____

1. Solve $\mathbf{X}' = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \mathbf{X}$.

2. Solve $\mathbf{X}' = \begin{pmatrix} 2 & 1 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 2 \end{pmatrix} \mathbf{X}$ using

$$\mathbf{X} = c_1 \mathbf{v}_1 e^{\lambda t} + c_2 (\mathbf{v}_1 t + \mathbf{v}_2) e^{\lambda t} + c_3 \left(\mathbf{v}_1 \frac{t^2}{2} + \mathbf{v}_2 t + \mathbf{v}_3 \right) e^{\lambda t}$$

where $(A - \lambda I)\mathbf{v}_1 = \mathbf{0}$, $(A - \lambda I)\mathbf{v}_2 = \mathbf{v}_1$, $(A - \lambda I)\mathbf{v}_3 = \mathbf{v}_2$. *Hint:* You do not need to find the characteristic polynomial. What are the eigenvalues of an upper triangular matrix?

3. Find the general solution to the system

$$\begin{aligned}x'_1 &= -\frac{1}{6}x_1 + \frac{1}{6}x_3 \\x'_2 &= \frac{1}{6}x_1 - \frac{1}{3}x_2 \\x'_3 &= \frac{1}{3}x_2 - \frac{1}{6}x_3.\end{aligned}$$

4. Find the solution to the IVP

$$\begin{aligned}x'(t) &= -x(t) + 3y(t) \\y'(t) &= -3y(t) + 5z(t) \\z'(t) &= -5z(t)\end{aligned}$$

$x(0) = 0, y(0) = 0, z(0) = 80$. *Hint:* You do not need to find the characteristic polynomial. What are the eigenvalues of an upper triangular matrix?