Week 10 Worksheet

Problem 1 Use Green’s Theorem to find the area of the ellipse (z/3)? + (y/4)?> = R?,
where R > 0.
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Problem 2 Let S be portion of the ellipsoid (/3)% + (y/4)% + (2/5)? = 1 lying between
the planes z = 0 and z = 1, oriented with outward-pointing normal vectors.

(a) Draw S with its boundary orientation.
(b) Let F be the vector field (—y, —z, 1). Check that F is the curl of (—y, yz, zz).
(c) Use Stokes’” Theorem to compute [[s F - dS.
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Problem 3 Let F = (1’ y*,22) and let S be the portion of the surface z = 22 — y? lying

inside 22 4+ y? = 1, oriented in the positive z-direction. Use Stokes’ Theorem

to compute
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Problem 4 Let f(z,y,z) be an inﬁnitely differentiable function of 3 variables. Let S be
the level surface f(z,y,z) = 0.

(a) Explain why the ﬁux fo through & must be nonzero, assuming that
S has nonzero surfac

(b) Use this to show that the vector field (z,y,z) does not have a vector
potential.
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Problem 5 Let S be the surface given in spherical coordinates by p = 1 +sin(¢), oriented
outward.

(a) Sketch the surface S.
(b) Use Stokes’ Theorem to compute [ F-dS, where F = (—42%, -2z, —3y?).
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