

Math 33A – Week 9

Written by Victoria Kala

March 11, 2020

Name: _____

1. Compute the determinant of the following matrices:

$$(a) A = \begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix}$$

$$(b) B = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$$

$$(c) C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

$$(d) D = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 3 & 5 \end{pmatrix}$$

2. For the matrices A, B, C, D given in Exercise 1, do $A^{-1}, B^{-1}, C^{-1}, D^{-1}$ exist?
3. The matrix C in Exercise 1c is an example of a diagonal matrix. What can you deduce about the determinants of diagonal matrices?
4. The matrix D in Exercise 1d is an example of a lower triangular matrix. What can you deduce about the determinants of upper or lower triangular matrices?
5. Complete the following properties:
 - $\det(I_n) = \underline{\hspace{2cm}}$
 - $\det(AB) = \det(\underline{\hspace{2cm}}) \det(\underline{\hspace{2cm}})$
 - $\det(A^T) = \det(\underline{\hspace{2cm}})$
6. If $\det(A)$ is nonzero, what is $\det(A^{-1})$? (Hint: use Exercise 5)
7. For the matrices A, B, C, D given in Exercise 1, find $\det(A^{-1}), \det(B^{-1}), \det(C^{-1}), \det(D^{-1})$ without finding the inverses explicitly.
8. If Q is an orthogonal matrix, what are the possibilities for $\det(Q)$? (Hint: use the definition of an orthogonal matrix and Exercise 5)
9. If $A^3 = 4A$, can we guarantee A is invertible? (Hint: take the determinant of both sides)

10. Find the eigenvalues and eigenvectors of the following matrices:

(a) $A = \begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix}$

(b) $E = \begin{pmatrix} 1 & -2 \\ 0 & 3 \end{pmatrix}$

11. Fill in the blank: the eigenvalues of a diagonal or triangular matrix are the _____ entries.

12. Using the property in Exercise 11, what are the eigenvalues of C and D given in Exercise 1?

13. Consider the matrix $B = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$.

(a) (*Long) Show that the characteristic polynomial of B is $p(\lambda) = -\lambda^3 + 5\lambda^2 - 8\lambda + 4$.

(b) The characteristic polynomial of B can be factored as $p(\lambda) = -(\lambda - 2)^2(\lambda - 1)$. What are the eigenvalues of B ?

(c) Find the eigenvectors of B .

14. Fill in the blank: matrices with _____ eigenvalues are diagonalizable.

15. When is a matrix not diagonalizable?

16. Diagonalize the matrices A, E, B given in Exercises 10, 13.

17. Find $A^{2020}, E^{2020}, B^{2020}$ for the matrices A, E, B given in Exercises 10, 13.