

Math 151A - Spring 2020 - Week 2

Office hours are Mondays 5-6pm PT and Thursdays 2-3pm PT.

From last week: `format long` and `format short` in Matlab do not affect precision.

Today: Bisection Method

Math 151A - Spring 2020 - Week 2

Example. (Similar to Exercises 3 and 4 on homework)

Consider the function $f(x) = x^3 + 4x^2 - 10$ on the interval $[1, 2]$.

(a) Show that $f(x)$ has exactly one root on $[1, 2]$ without solving the equation.

Proof. f is continuous. $f(1) = -5 < 0$, $f(2) = 14 > 0$.

By Intermediate Value Theorem there is a $p \in (1, 2)$

such that $f(p) = 0$.

$$f'(x) = 3x^2 + 8x > 0 \quad \forall x \in [1, 2]$$

f is strictly increasing in $[1, 2] \Rightarrow$ exactly one root in $[1, 2]$.

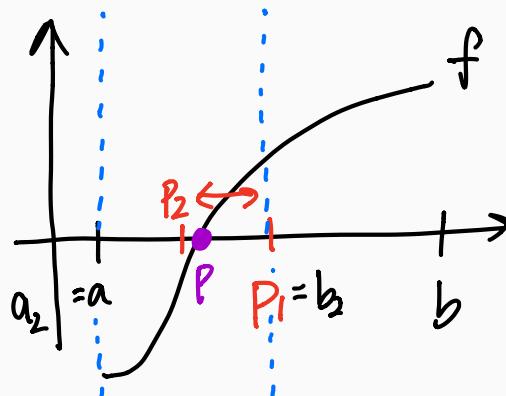
Math 151A - Spring 2020 - Week 2

Example. (Similar to Exercises 3 and 4 on homework)

Consider the function $f(x) = x^3 + 4x^2 - 10$ on the interval $[1, 2]$.

$$10^{-5} \quad \|p\| = 10^{-5}$$

(b) Consider the bisection method algorithm starting on the interval $[1, 2]$. Find the minimum number of iterations required to approximate the solution with an absolute error of less than 10^{-3} .



Observation

$$\frac{b_2 - a_2}{b_1 - a_1} = \frac{1}{2} (b_1 - a_1)$$

$$\boxed{\begin{aligned} |p_2 - p_1| &= \frac{1}{2} |b_2 - a_2| \\ |p_n - p_{n-1}| &= \frac{1}{2} |b_n - a_n| \end{aligned}}$$

$$\bullet b_n - a_n = \frac{1}{2} (b_{n-1} - a_{n-1}) = \dots = \frac{1}{2^{n-1}} (b - a)$$

$$\bullet |p - p_1| \leq \frac{1}{2} |b - a|, \quad |p - p_2| \leq \frac{1}{2} |b_2 - a_2|, \dots$$

$$\bullet |p - p_n| \leq \frac{1}{2} |b_n - a_n| = \frac{1}{2^n} |b - a| = \frac{1}{2^n} < 10^{-3}$$

$$2^n > 10^3 \quad n > \frac{\log 10^3}{\log 2} \approx 9.9 \text{ ish}$$

$n = 10$ iterations

Math 151A - Spring 2020 - Week 2

Example. (Similar to Exercises 3 and 4 on homework)

Consider the function $f(x) = x^3 + 4x^2 - 10$ on the interval $[1,2]$.

(c) Now program a bisection algorithm to verify this. In particular, create three figures.

- In the first figure, plot the values $|p - p_n|$ on the y -axis, and the iteration number in the x -axis.
- In the second figure, plot $|p - p_{n-1}|$ in the y -axis and the iteration number in the x -axis.
- In the third figure, plot the values for $|f(p_n)|$ on the y -axis and the iteration number in the x -axis.

Do your experiments coincide with (b)?