Math 151A - Spring 2020 - Week 3

Today:

e Fixed-Point lteration

e Homework questions (if time)
Important Theorems:

e Intermediate Value Theorem: If f is continuous on [a, b] with f(a)
and f(b) having opposite signs, then there exists a ¢ € (a, b) such
that f(c) = 0.

e Mean Value Theorem: If f is continuous on [a, b] and differentiable
on (a, b), then there exists a number ¢ € (a, b) such that
f(b) — f(a) = f'(c)(b— a).
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Example. (Similar to Exercise 4 on Homework 2)
Consider the function g(x) = arctanx + 3 on the interval [1,2].

(a) Show that g has a fixed point on this interval.
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Example. (Similar to Exercise 4 on Homework 2)
Consider the function g(x) = arctanx + 3 on the interval [1,2].

(b) Show that g has a unique fixed point on this interval.
Option 1: Use derivatives
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Example. (Similar to Exercise 4 on Homework 2)
Consider the function g(x) = arctanx + 3 on the interval [1,2].

(b) Show that g has a unique fixed point on this interval.
Option 2: Contradiction using Mean Value Theorem
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Example. (Similar to Exercise 4 on Homework 2)

Consider the function g(x) = arctan x + 3 on the interval [1,2]

(c) Suppose we wish to use the fixed-point iteration for approximating
p. Does the method converge? Justify your answer.

Option 1: Prove directly with Mean Value Theorem
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Example. (Similar to Exercise 4 on Homework 2)
Consider the function g(x) = arctanx + 3 on the interval [1,2].

(c) Suppose we wish to use the fixed-point iteration for approximating
p. Does the method converge? Justify your answer.
Option 1: Prove directly with Mean Value Theorem
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Example. (Similar to Exercise 4 on Homework 2)
Consider the function g(x) = arctanx + 3 on the interval [1,2].

(c) Suppose we wish to use the fixed-point iteration for approximating
p. Does the method converge? Justify your answer.
Option 1: Prove directly with Mean Value Theorem
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Example. (Similar to Exercise 4 on Homework 2)
Consider the function g(x) = arctanx + 3 on the interval [1,2].

(c) Suppose we wish to use the fixed point iteration for approximating
p. Does the method converge? Justify your answer.
Option 2: Use the Fixed-Point Theorem (Theorem 2.4 of

textbook) L) /

Fixed-Point Theorem. Let g € C[a, b] such that g(x) € [a, b] for
all x € [a, b]. Suppose, in aMg exists on (a, b) and that a
constant 0 < k < 1 exists with |g’(x)| < k for all x € (a,b). Then

. V\Nw .
for any number pg in [a, b] the sequence defined by

J 415 omAvivtore [

pn = &(pn—_1),n > 1 converges to the unique fixed point p in [a, b].
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Example. (Similar to Exercise 4 on Homework 2)
Consider the function g(x) = arctanx + 3 on the interval [1,2].

(d) Estimate the number of iterations necessary to achieve an accuracy
of 1073 when applying the fixed point iteration for approximating p.
Option 1: Use bound from part (c), Option 1
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Example. (Similar to Exercise 4 on Homework 2)
Consider the function g(x) = arctanx + 3 on the interval [1,2].

(d) Estimate the number of iterations necessary to achieve an accuracy
of 1073 when applying the fixed point iteration for approximating p.
Option 2: Use Corollary 2.5 of the textbook

Corollary 2.5 Let g € C|a, b] such that g(x) € [a, b] for all

x € [a, b]. Suppose, in addition that g’ exists on (a, b) and that a
constant 0 < k < 1 exists with |g’(x)| < k for all x € (a, b). Then
the bounds for the error of fixed-point iteration involved in using p,
to approximate p are given by

|Pn — p| < k" max{po — a, b — po} (1)

and
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Example. (Similar to Exercise 4 on Homework 2)
Consider the function g(x) = arctanx + 3 on the interval [1,2].

a b

(d) Estimate the number of iterations necessary to achieve an accuracy
of 1073 when applying the fixed point iteration for approximating p.
Option 2: Use Corollary 2.5 of the textbook

|pn — p| < k" max{py — a, b — pg}< lén/b’q] (1)
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Example. (Similar to Exercise 4 on Homework 2)
Consider the function g(x) = arctanx + 3 on the interval [1,2].

(d) Estimate the number of iterations necessary to achieve an accuracy
of 1073 when applying the fixed point iteration for approximating p.
Option 2: Use Corollary 2.5 of the textbook
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Example. (Similar to Exercise 4 on Homework 2)
Consider the function g(x) = arctanx + 3 on the interval [1,2].

(e) Use fixed-point iteration to find an approximation to the fixed point
that is accurate to within 103 using stopping criteria based on
lg(pn) — pn| and |pn — pn_1|. Create three figures for the following
convergence histories: |g(pn) — Pnl, |Pn — Pn—1|, and |p, — p*| where
p* is your approximation for p.
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Homework 1 Announcements:

e |f your number of iterations for bisection method doesn’'t match your
theoretical calculation, make the following change in bisection.m:

if err < tol || abs(fp) < tol — if err < tol

\

e For Exercise 3, you know that p = 0.7. Use this value for plotting
. c s
|p — pn| vs. iteration.

e For Exercise 4, you do not know the exact value of p. You do not
need to plot |p — p,| vs. iteration.
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Questions?



