

Math 151A - Spring 2020 - Week 3

Today:

- Fixed-Point Iteration
- Homework questions (if time)

Important Theorems:

- Intermediate Value Theorem: If f is continuous on $[a, b]$ with $f(a)$ and $f(b)$ having opposite signs, then there exists a $c \in (a, b)$ such that $f(c) = 0$.
- Mean Value Theorem: If f is continuous on $[a, b]$ and differentiable on (a, b) , then there exists a number $c \in (a, b)$ such that $f(b) - f(a) = f'(c)(b - a)$.

Math 151A - Spring 2020 - Week 3

Example. (Similar to Exercise 4 on Homework 2)

Consider the function $g(x) = \arctan x + \frac{1}{2}$ on the interval $[1, 2]$.

(a) Show that g has a fixed point on this interval.

Want to show $\exists p \in [1, 2]$ such that $g(p) = p$
 $\Leftrightarrow g(p) - p = 0$

Define $f(x) = g(x) - x$

$$f(1) = \arctan 1 + \frac{1}{2} - 1 > 0$$

$$f(2) = \arctan 2 + \frac{1}{2} - 2 < 0$$

f is continuous

By IVT $\exists p \in (1, 2)$ such that $f(p) = 0$
 $\Rightarrow g(p) = p$.

Math 151A - Spring 2020 - Week 3

Example. (Similar to Exercise 4 on Homework 2)

Consider the function $g(x) = \arctan x + \frac{1}{2}$ on the interval $[1, 2]$.

(b) Show that g has a unique fixed point on this interval.

Option 1: Use derivatives

$f(x) = g(x) - x$, by part (a) we know $\exists p \in (1, 2)$
such that $f(p) = 0$

$f'(x) = g'(x) - 1 = \frac{1}{1+x^2} - 1 < 0$ strictly decreasing
in $(1, 2)$

$1 \leq x \leq 2 \Rightarrow \frac{1}{5} \leq \frac{1}{1+x^2} \leq \frac{1}{2}$

p is unique

Math 151A - Spring 2020 - Week 3

Example. (Similar to Exercise 4 on Homework 2)

Consider the function $g(x) = \arctan x + \frac{1}{2}$ on the interval $[1, 2]$.

(b) Show that g has a unique fixed point on this interval.

Option 2: Contradiction using Mean Value Theorem

Suppose by contradiction $\exists p, q, p \neq q$, s.t. $\underline{g(p)=p \neq g(q)=q}$.

By MVT $\exists r$ between p and q such that

$$|g(p) - g(q)| = |g'(r)| |(p - q)|$$

$$g'(r) = \frac{1}{1+r^2} \text{ since } [1, 2] \quad |g'(r)| \leq \frac{1}{2}$$

$$|g(p) - g(q)| \leq \frac{1}{2} |p - q| < |p - q|$$

$$\underbrace{|p - q| < |p - q|}_{\text{Contradiction}}$$

\Rightarrow the fixed point is unique

Math 151A - Spring 2020 - Week 3

Example. (Similar to Exercise 4 on Homework 2)

Consider the function $g(x) = \arctan x + \frac{1}{2}$ on the interval $[1, 2]$.

(c) Suppose we wish to use the fixed-point iteration for approximating p . Does the method converge? Justify your answer.

Option 1: Prove directly with Mean Value Theorem

Fixed-point iteration $p_0 \in [1, 2]$ Want to show
 $g(p) = p$ $p_n = g(p_{n-1})$, $n \geq 1$ $p_n \rightarrow p$
 $\Leftrightarrow |p_n - p| \rightarrow 0$ as $n \rightarrow \infty$

$$|p_n - p| = |g(p_{n-1}) - g(p)| = |g'(r_{n-1})| |p_{n-1} - p| \text{ by MVT where } r_{n-1} \text{ is between } p_{n-1} \text{ and } p$$

$$= \left| \frac{1}{1+r_{n-1}^2} \right| |p_{n-1} - p| \quad r_{n-1} \in [1, 2]$$

$$\leq \frac{1}{2} |p_{n-1} - p|$$

Math 151A - Spring 2020 - Week 3

Example. (Similar to Exercise 4 on Homework 2)

Consider the function $g(x) = \arctan x + \frac{1}{2}$ on the interval $[1, 2]$.

(c) Suppose we wish to use the fixed-point iteration for approximating p . Does the method converge? Justify your answer.

Option 1: Prove directly with Mean Value Theorem

$$\begin{aligned} |p_n - p| &\leq \frac{1}{2} |p_{n-1} - p| = \frac{1}{2} |g(p_{n-2}) - g(p)| \\ &= \frac{1}{2} |g'(r_{n-2})| |p_{n-2} - p| \quad \text{by MVT where } r_{n-2} \text{ is between } p_{n-2} \text{ and } p, r_{n-2} \in (1, 2) \\ &= \frac{1}{2} \left(\frac{1}{1+r_{n-2}^2} \right) |p_{n-2} - p| \\ &\leq \left(\frac{1}{2} \right)^{\frac{1}{2}} |p_{n-2} - p| \end{aligned}$$

⋮

Math 151A - Spring 2020 - Week 3

Example. (Similar to Exercise 4 on Homework 2)

Consider the function $g(x) = \arctan x + \frac{1}{2}$ on the interval $[1, 2]$.

(c) Suppose we wish to use the fixed-point iteration for approximating p . Does the method converge? Justify your answer.

Option 1: Prove directly with Mean Value Theorem

$$|p_n - p| \leq \underbrace{\left(\frac{1}{2}\right)^n}_{\text{MVT}} |p_0 - p|$$

$$\left(\frac{1}{2}\right)^n \rightarrow 0 \text{ as } n \rightarrow \infty$$

$$|p_n - p| \rightarrow 0 \text{ as } n \rightarrow \infty$$

$p_n \rightarrow p$ as $n \rightarrow \infty$ iteration converges ✓

Math 151A - Spring 2020 - Week 3

Example. (Similar to Exercise 4 on Homework 2)

Consider the function $g(x) = \arctan x + \frac{1}{2}$ on the interval $[1, 2]$.

(c) Suppose we wish to use the fixed point iteration for approximating p . Does the method converge? Justify your answer.

Option 2: Use the **Fixed-Point Theorem** (Theorem 2.4 of textbook)

Fixed-Point Theorem. Let $g \in C[a, b]$ such that $g(x) \in [a, b]$ for all $x \in [a, b]$. Suppose, in addition that g' exists on (a, b) and that a constant $0 < k < 1$ exists with $|g'(x)| \leq k$ for all $x \in (a, b)$. Then for any number p_0 in $[a, b]$ the sequence defined by

$p_n = g(p_{n-1})$, $n \geq 1$ converges to the unique fixed point p in $[a, b]$.

$$|g'(x)| = \left| \frac{1}{1+x^2} \right| \leq \underbrace{\frac{1}{2}}_k$$

Since all hypotheses are satisfied, then by Fixed-point theorem the iteration converges.

Math 151A - Spring 2020 - Week 3

Example. (Similar to Exercise 4 on Homework 2)

Consider the function $g(x) = \arctan x + \frac{1}{2}$ on the interval $[1, 2]$.

(d) Estimate the number of iterations necessary to achieve an accuracy of 10^{-3} when applying the fixed point iteration for approximating p .

Option 1: Use bound from part (c), Option 1

$$|p_n - p| \leq \left(\frac{1}{2}\right)^n |p_0 - p| \leq \left(\frac{1}{2}\right)^n |b - a| = \underline{\underline{\left(\frac{1}{2}\right)^n}}$$

$\uparrow \quad \uparrow$
 $p_0? \quad p?$

$$\left(\frac{1}{2}\right)^n < 10^{-3}$$
$$\frac{1}{2^n} < \frac{1}{10^3} \Rightarrow 2^n > 10^3 \Rightarrow n > \frac{\log(10^3)}{\log 2} \approx 9.96 \text{ iterations}$$

10 iterations

Math 151A - Spring 2020 - Week 3

Example. (Similar to Exercise 4 on Homework 2)

Consider the function $g(x) = \arctan x + \frac{1}{2}$ on the interval $[1, 2]$.

(d) Estimate the number of iterations necessary to achieve an accuracy of 10^{-3} when applying the fixed point iteration for approximating p .

Option 2: Use **Corollary 2.5** of the textbook

Corollary 2.5 Let $g \in C[a, b]$ such that $g(x) \in [a, b]$ for all $x \in [a, b]$. Suppose, in addition that g' exists on (a, b) and that a constant $0 < k < 1$ exists with $|g'(x)| \leq k$ for all $x \in (a, b)$. Then the bounds for the error of fixed-point iteration involved in using p_n to approximate p are given by

$$|p_n - p| \leq k^n \max\{p_0 - a, b - p_0\} \quad (1)$$

and

$$|p_n - p| \leq \frac{k^n}{1 - k} |p_1 - p_0| \quad (2)$$

Math 151A - Spring 2020 - Week 3

Example. (Similar to Exercise 4 on Homework 2)

Consider the function $g(x) = \arctan x + \frac{1}{2}$ on the interval $[1, 2]$.
$$a \quad b$$

(d) Estimate the number of iterations necessary to achieve an accuracy of 10^{-3} when applying the fixed point iteration for approximating p .

Option 2: Use **Corollary 2.5** of the textbook

$$|p_n - p| \leq k^n \max\{p_0 - a, b - p_0\} \leq k^n |b - a| \quad (1)$$

↑
?

$$k^n |b - a| < 10^{-3}$$

$$\left(\frac{1}{2}\right)^n < 10^{-3} \quad \text{same as last, } n = 10 \text{ iterations}$$

$$|g'(x)| \leq k$$

$$\left|\frac{1}{1+x^2}\right| \leq \frac{1}{2} \quad \text{on } [1, 2]$$

Math 151A - Spring 2020 - Week 3

Example. (Similar to Exercise 4 on Homework 2)

Consider the function $g(x) = \arctan x + \frac{1}{2}$ on the interval $[1, 2]$.

(d) Estimate the number of iterations necessary to achieve an accuracy of 10^{-3} when applying the fixed point iteration for approximating p .

Option 2: Use **Corollary 2.5** of the textbook

$$k = \frac{1}{2}$$

$$|p_n - p| \leq \frac{k^n}{1-k} |p_1 - p_0| \leq \frac{k^n}{1-k} |b-a| \quad (2)$$

$$\frac{k^n}{1-k} < 10^{-3}$$
$$k^n < 10^{-3} (1-k)$$
$$\left(\frac{1}{2}\right)^n < 10^{-3} \cdot \frac{1}{2}$$

$$\frac{1}{2^n} < \frac{1}{2 \cdot 10^{-3}}$$
$$2^n > 2 \cdot 10^{-3}$$
$$n > \frac{\log(2 \cdot 10^{-3})}{\log(2)} \approx 10.96 \text{ish}$$

11 iterations

Math 151A - Spring 2020 - Week 3

Example. (Similar to Exercise 4 on Homework 2)

Consider the function $g(x) = \arctan x + \frac{1}{2}$ on the interval $[1, 2]$.

(e) Use fixed-point iteration to find an approximation to the fixed point that is accurate to within 10^{-3} using stopping criteria based on $|g(p_n) - p_n|$ and $|p_n - p_{n-1}|$. Create three figures for the following convergence histories: $|g(p_n) - p_n|$, $|p_n - p_{n-1}|$, and $|p_n - p^*|$ where p^* is your approximation for p .

Homework 1 Announcements:

- If your number of iterations for bisection method doesn't match your theoretical calculation, make the following change in bisection.m:

```
if err < tol || abs(fp) < tol → if err < tol
```

\backslash

- For Exercise 3, you know that $\underline{p} = 0.7$. Use this value for plotting $|p - p_n|$ vs. iteration.
- For Exercise 4, you do not know the exact value of p . You do not need to plot $|p - p_n|$ vs. iteration.

$|\tilde{p} - p_n|$ where \tilde{p} is approximate p

Math 151A - Spring 2020 - Week 3

Questions?