

Math 151A - Spring 2020 - Week 4

Today:

- Order of convergence
- Comparing iterative methods

Homework Announcements:

- Make sure to “submit” your homework on CCLE, not just upload a draft
- Cite any important theorems you use and why you can use them
- For programming questions, make sure to write a short summary of your result (e.g. “My code estimated $p = 1.365230$ with a tolerance 10^{-6} and initial guess $p_0 = 1.5$ ”)
- Export images as .png or .jpg, don’t use the Matlab default .fig
- If you submitted a code but it has errors, make sure to fix before the exam

Math 151A - Spring 2020 - Week 4

If p_n is a sequence converging to p with $p_n \neq p$ for all n , and if there exist $\lambda, \alpha > 0$ such that

$$\lim_{n \rightarrow \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} = \lambda,$$

then p_n converges to p with **order** α .

$\alpha = 1 \Rightarrow$ linear convergence

$\alpha = 2 \Rightarrow$ quadratic convergence

Order of Convergence for Fixed-Point Iteration:

- Satisfy the hypothesis of the fixed-point theorem
- If $p = g(p)$ and $g'(p) \neq 0$, then the fixed-point iteration converges **linearly**
- If $p = g(p)$, $g'(p) = 0$, and g'' is bounded in an open interval around p , then there is an interval where the fixed-point iteration converges **at least quadratically**

Math 151A - Spring 2020 - Week 4

Example 1. Last week we showed the fixed-point iteration $x_{n+1} = g(x_n)$ with $g(x) = \arctan x + \frac{1}{2}$ converges on the interval $[1, 2]$ with some $x_0 \in [1, 2]$. What is the order of convergence?

Scratch work

$$g(x) = \arctan x + \frac{1}{2} \quad g(x^*) = x^* \rightarrow \arctan x^* + \frac{1}{2} = x^*$$
$$g'(x) = \frac{1}{1+x^2} \quad g'(x^*) \neq 0 \rightarrow \text{expect linear convergence}$$

Claim x_n converge linearly

Options for proving:

- contraction theorem in textbook
- directly (Mean Value Theorem)

Math 151A - Spring 2020 - Week 4

Example 1. Last week we showed the fixed-point iteration $\underbrace{x_{n+1} = g(x_n)}_{x_0 \in [1, 2]}$ with $g(x) = \arctan x + \frac{1}{2}$ converges on the interval $[1, 2]$ with some $x^* \in [1, 2]$. What is the order of convergence?

$g \in C[1, 2]$, g is diff. on $(1, 2)$

$$x^* = g(x^*)$$

$$|x_{n+1} - x^*| = |g(x_n) - g(x^*)|$$

$= |g'(\xi_n)| |x_n - x^*|$ by MVT where ξ_n is between x_n and x^*

$$\frac{|x_{n+1} - x^*|}{|x_n - x^*|} = |g'(\xi_n)|$$

Since ξ_n is between x_n and x^* ,
 $\xi_n \rightarrow x^*$.

$$\lim_{n \rightarrow \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|} = \lim_{n \rightarrow \infty} |g'(\xi_n)| = |g'(x^*)| = \frac{1}{1+x^*} > 0$$

Therefore $x_n \rightarrow x^*$ (linearly).

Math 151A - Spring 2020 - Week 4

Example 2. Show that the function $g(x) = \frac{2x^3 + 1}{3x^2}$ has the fixed point $x^* = 1$. Given that the fixed-point iteration $x_{n+1} = g(x_n)$ on the interval $[0.9, 1.1]$ converges to $x^* = 1$ with some $x_0 \in [0.9, 1.1]$, what is the order of convergence?

Fixed point: $g(x^*) = x^*$ i.e. $g(1) = 1$

$$g(1) = \frac{2(1)^3 + 1}{3(1)^2} = \frac{3}{3} = 1 \checkmark \quad x^* = 1 \text{ is a fixed point of } g.$$

Scratch work: $g(x) = \frac{2}{3}x + \frac{1}{3x^2}$

$$g'(x) = \frac{2}{3} - \frac{2}{3}x^{-3} \quad g'(1) = \frac{2}{3} - \frac{2}{3} = 0$$
$$g''(x) = 2x^{-4} \quad g''(1) = 2 \quad \text{quadratic convergence}$$

Math 151A - Spring 2020 - Week 4

Example 2. Show that the function $g(x) = \frac{2x^3 + 1}{3x^2}$ has the fixed point $x^* = 1$. Given that the fixed-point iteration $x_{n+1} = g(x_n)$ on the interval $[0.9, 1.1]$ converges to $x^* = 1$ with some $x_0 \in [0.9, 1.1]$, what is the order of convergence?

Claim x_n converges quadratically.

Prof. $g(x_n) < g(x^*) + \frac{g'(x^*)}{2!}(x_n - x^*) + \frac{g''(\xi_n)}{2!}(x_n - x^*)^2$

by Taylor's Theorem where ξ_n is between x_n and x^* ($g \in C^2[0.9, 1.1]$)

$$|x_{n+1} - x^*| = |g(x_n) - g(x^*)| = \frac{|g''(\xi_n)|}{2!} |x_n - x^*|^2$$

$$\lim_{n \rightarrow \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|^2} = \lim_{n \rightarrow \infty} \frac{|g''(\xi_n)|}{2!} = \frac{|g''(x^*)|}{2} = \frac{2}{2} = 1 > 0$$

because ξ_n also converges to x^* .

Therefore $x_n \rightarrow x^*$ quadratically.

Math 151A - Spring 2020 - Week 4

Note: it turns out the last example was Newton's method with $f(x) = x^3 - 1$.

$$x_{n+1} = g(x_n) = \frac{2x_n^3 + 1}{3x_n^2}$$

Newton's method: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

$$= x_n - \frac{x_n^3 - 1}{3x_n^2}$$
$$= \frac{3x_n^3 - x_n^3 + 1}{3x_n^2}$$
$$= \frac{2x_n^3 + 1}{3x_n^2}$$

Order of Convergence for Newton's Method:

- $f \in C^2[a, b]$, $p \in [a, b]$
- If $f(p) = 0$ and $f'(p) \neq 0$, then Newton's method converges **quadratically** provided we start close enough to p
- If $f(p) = 0$, $f'(p) = 0$, (i.e. p is not a simple zero), then Newton's method converges **linearly** provided we start close enough to p

Math 151A - Spring 2020 - Week 4

Example 3. Consider Newton's method of finding the root of $f(x) = 0$ where $f(x) = x^2(x - 1)$ with some initial guess x_0 . What are the possible roots this method could converge to? What is the order of convergence we would expect for each of these roots?

Roots: $x^2(x - 1) = 0$

$$\boxed{x=0 \quad x=1}$$

mult. 2 mult. 1
not simple simple zero

- expect linear convergence near $x=0$
- expect quadratic convergence near $x=1$

$$f(x) = x^3 - x^2$$

$$f'(x) = 3x^2 - 2x \quad f'(0) = 3(0)^2 - 2(0) = 0 \quad \text{not simple}$$
$$f'(1) = 3(1)^2 - 2(1) = 1 \quad \text{simple}$$

Math 151A - Spring 2020 - Week 4

For the last example, we run `example3.m` and `newton.m` with a tolerance of 10^{-16} .

- If we start with $x_0 = 0.1$, our method converges to $x = 0$ but it takes 24 iterations!
- If we start with $x_0 = 1.4$, our method converges to $x = 1$ in only 6 iterations.

Math 151A - Spring 2020 - Week 4

Example 4. Consider Newton's method of finding the root of $f(x) = 0$ where $f(x) = x^2 + 2xe^{-x} + e^{-2x}$ with some initial guess $x_0 \in [0, 1]$. Does this method converge linearly or quadratically?

$$f(x) = (x + e^{-x})^2$$

$$f(x^*) = 0$$

$$(x^* + e^{-x^*})^2 = 0$$

$$\underbrace{x^* + e^{-x^*}}_{} = 0$$

$$f'(x) \approx 2(x + e^{-x})(1 - e^{-x})$$

$$f'(x^*) = 2(\underbrace{x^* + e^{-x^*}}_{})(1 - e^{-x^*}) = 0$$

linear convergence

Math 151A - Spring 2020 - Week 4

$$g(x^*) = x^*$$

Example 5. Compare the Bisection, Fixed-Point, Newton's, Secant, and False Position methods for finding the root of $x^3 + 4x^2 - 10 = 0$ on $[1, 2]$ with a tolerance 10^{-6} .

- See `example5.m`, `bisection.m`, `fixedpoint.m`, `newton.m`, `secant.m`, `falseposition.m`

- Bisection, Newton, Secant, and False Position methods all use

$$f(x) = x^3 + 4x^2 - 10$$

- Newton's method also requires $f'(x) = 3x^2 + 8x$

- Fixed-Point method uses $g(x) = \sqrt{\frac{10}{4+x}}$

- Initial guess for Fixed-Point and Newton methods: $p_0 = 1.5$

- Initial guesses for Secant and False Position methods:

$$p_0 = 1.25, p_1 = 1.5 \quad (f(p_0) < 0, f(p_1) > 0)$$

Fixed point: $x^3 + 4x^2 - 10 = 0$

$$x^3 + 4x^2 + x - 10 = x \rightarrow g_1(x) = x^3 + 4x^2 + x - 10$$

$$g_1'(x) = 3x^2 + 8x + 1 \quad \text{diverges}$$

$|g_1'(x)| \geq 1$
on $[1, 2]$

Math 151A - Spring 2020 - Week 4

Summary:

	Bisection	Fixed-Point	Newton's	Secant	False Position
Solves for	$f(x^*) = 0$	$g(x^*) = x^*$	$f(x^*) = 0$	$f(x^*) = 0$	$f(x^*) = 0$
Order of conv.	$\alpha \geq 1$	$\alpha = 1 \text{ if } g'(x^*) \neq 0$ $\alpha \geq 2 \text{ if } g'(x^*) = 0$	$\alpha = 1 \text{ if } f'(x^*) = 0$ $\alpha \geq 2 \text{ if } f'(x^*) \neq 0$	$\alpha = \frac{1 + \sqrt{5}}{2}$	$\alpha = \frac{1 + \sqrt{5}}{2}$
Pros	<ul style="list-style-type: none"> • always converges • error analysis 	<ul style="list-style-type: none"> • error analysis 		<ul style="list-style-type: none"> • no derivatives 	<ul style="list-style-type: none"> • always converges
Cons	<ul style="list-style-type: none"> • slow 	<ul style="list-style-type: none"> • might not converge • need a contraction 	<ul style="list-style-type: none"> • need f' • f' close to 0 	<ul style="list-style-type: none"> • 2 initial guesses 	