

Math 151A - Spring 2020 - Week 7

Today: Interpolation

- Newton's form and divided differences
- Using MATLAB for interpolation and plotting
- Equally spaced nodes vs. Chebyshev nodes example
- Piecewise linear interpolation example
- Spline example
- Questions (if time)

Newton's Form

$$P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, x_1, \dots, x_k](x - x_0) \cdots (x - x_{k-1})$$

where

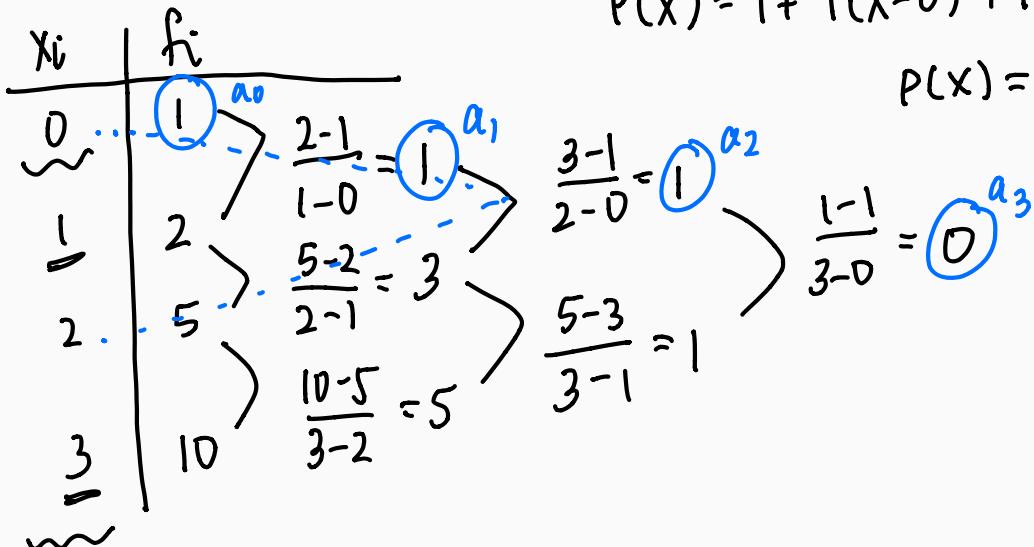
$$f[x_i] = f(x_i)$$

$$f[x_0, \dots, x_k] = \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}$$

Math 151A - Spring 2020 - Week 7

Example 1. Given $(0, 1), (1, 2), (2, 5), (3, 10)$, use Newton's form and divided differences to find a polynomial $P(x)$ that fits these points. What is $P(4)$? Verify your result with MATLAB.

$$P(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + a_3(x-x_0)(x-x_1)(x-x_2)$$
$$P(x) = 1 + 1(x-0) + 1(x-0)(x-1) + \cancel{0(x-0)(x-1)(x-2)}$$



$$P(x) = 1 + x + x^2 - x$$

$$P(x) = 1 + x^2$$

$$P(4) = 1 + 4^2 = 17$$

Math 151A - Spring 2020 - Week 7

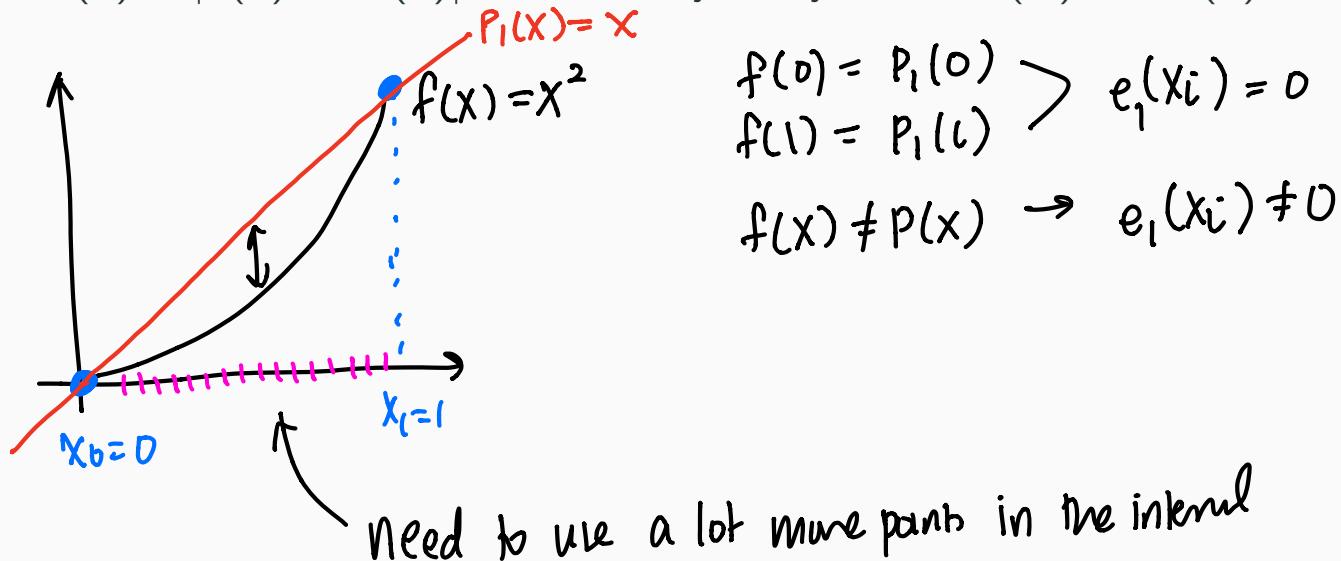
Using MATLAB for interpolation and plotting

Motivating Example: Consider $f(x) = x^2$ with nodes $x_0 = 0, x_1 = 1$.

What is the polynomial $P_1(x)$ that interpolates these nodes? Is

$f(x_i) = P_1(x_i)$? Is $f(x) = P(x)$? Consider the error

$e_1(x) = |f(x) - P_1(x)|$. What can you say about $e_1(x_i)$? Is $e_1(x) = 0$?



Using MATLAB for interpolation and plotting

Steps:

1. Generate nodes x_i, f_i for $i = 0, \dots, \underline{n}$ (options: given, equally spaced, Chebyshev)
2. Generate \tilde{x}_j for plotting, $j = 0, \dots, \underline{m}$ where m is some number of plotting points (my recommendation: equally spaced)
3. Evaluate $P_n(\tilde{x}_j)$ for $j = 0, \dots, m$

Note: P_n depends on the nodes, so these will be an input to the MATLAB function.

e.g. If I wanted to use Lagrange interpolation to form P_n with nodes stored in vectors \mathbf{x}, \mathbf{f} , then $P_n(\tilde{x}_j)$ could possibly be found with the following call:

$$P(j) = \underline{\text{lagrange}(\mathbf{x}, \mathbf{f}, \tilde{\mathbf{x}}(j))}$$

Math 151A - Spring 2020 - Week 7

Example 2. Let $f(x) = \frac{1}{1+25x^2}$. Plot the interpolating polynomial $P_n(x)$ of $f(x)$ and error $e_n(x) = |f(x) - P_n(x)|$ on the interval $[-1, 1]$ corresponding to

- (a) equally spaced nodes for $n = 4, 8, 12, 20$
- (b) Chebyshev nodes for $n = 4, 8, 12, 20$.

Interval $[a, b]$

equally spaced nodes: $x_i = a + ih$, $h = \frac{b-a}{n}$, $n = \text{number of slices}$
 $i = 0, \dots, n$ (maybe related to degree)

Chebyshev nodes: $x_i = \frac{a+b}{2} + \frac{b-a}{2} \cos\left(\frac{2i+1}{2n+1} \pi\right)$
 $i = 0, \dots, n$

Math 151A - Spring 2020 - Week 7

Example 3. Let $f(x) = e^x$. Plot f and the piecewise linear polynomial $S_{1,5}$ that is constructed with 6 equally spaced nodes \tilde{x}_i using 101 equally spaced points \tilde{x}_j on the interval $[0, 1]$. What is $\max_{x_i} |f(x) - S_{1,5}(x)|$? What is $\max_{\tilde{x}_j} |f(x) - S_{1,5}(x)|$?

$$\max_{x_i} |f(x) - S_{1,5}(x)| = 0$$

$$\max_{\tilde{x}_j} |f(x) - S_{1,5}(x)| \neq 0$$

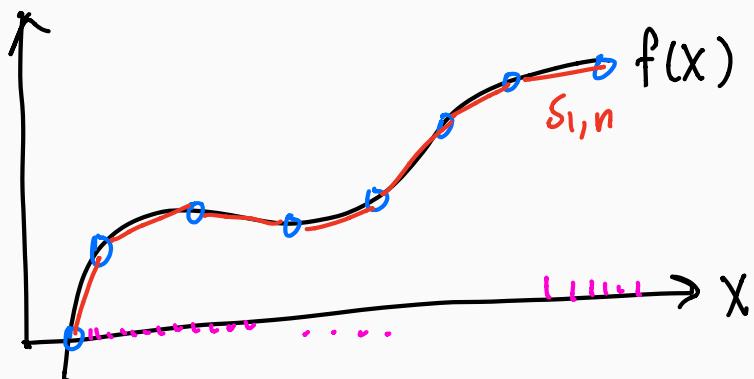
0.023

Math 151A - Spring 2020 - Week 7

Questions?

$S_{1,n}$ $n+1$ points

#3a $|f(x) - P_i(x)| \leq \frac{1}{8} M_i \underline{h}^2$ where $M_i = \max_{x_{i-1} \leq x \leq x_i} |f''(x)|$



x_0, \dots, x_n equally distributed nodes

$\rightarrow \tilde{x}_0, \dots, \tilde{x}_{999}$ equally distributed for plotting
don't affect the error

$$h = \frac{b-a}{n}$$

$$\text{error} \leq \frac{1}{8} \max_{[0,1]} |f''(x)| \left(\frac{b-a}{n} \right)^2 < \text{tol}$$

Solve for n

