

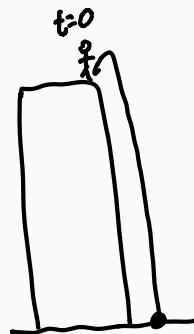
Important Concepts

- Quadratic equations
 - Vertex/transformation form $f(x) = a(x - h)^2 + k$
- Polynomials
 - Long run behavior comes from degree and leading coefficient
 - Short run behavior comes from intercepts and multiplicities
- Rational Functions
 - Vertical asymptotes come from the denominator of the function
 - Horizontal asymptotes depend on degree of numerator and denominator

Math 1 - Summer 2020 - July 7

Example 1. A person on Planet A kicks a ball from the top of a building, and its height after t seconds is given by $h(t) = -3t^2 + 18t + 9$.

$$a = -3 \quad b = 18$$



- (a) What was the height of the building?

$$t=0 \quad h(0) = -3(0)^2 + 18(0) + 9 = 9$$

- (b) What is the maximum height the ball reaches?

$\rightarrow h = \frac{-18}{2(-3)} = \frac{-18}{-6} = 3$ seconds

not the same as $h(t)$

$$\begin{aligned} k &= h(3) = -3(3)^2 + 18(3) + 9 \\ &= -27 + 54 + 9 \\ &= 27 + 9 \\ &= 36 \quad \text{height} \end{aligned}$$

- (c) When does the ball hit the ground?

$$h(t) = 0$$

$$-3t^2 + 18t + 9 = 0$$

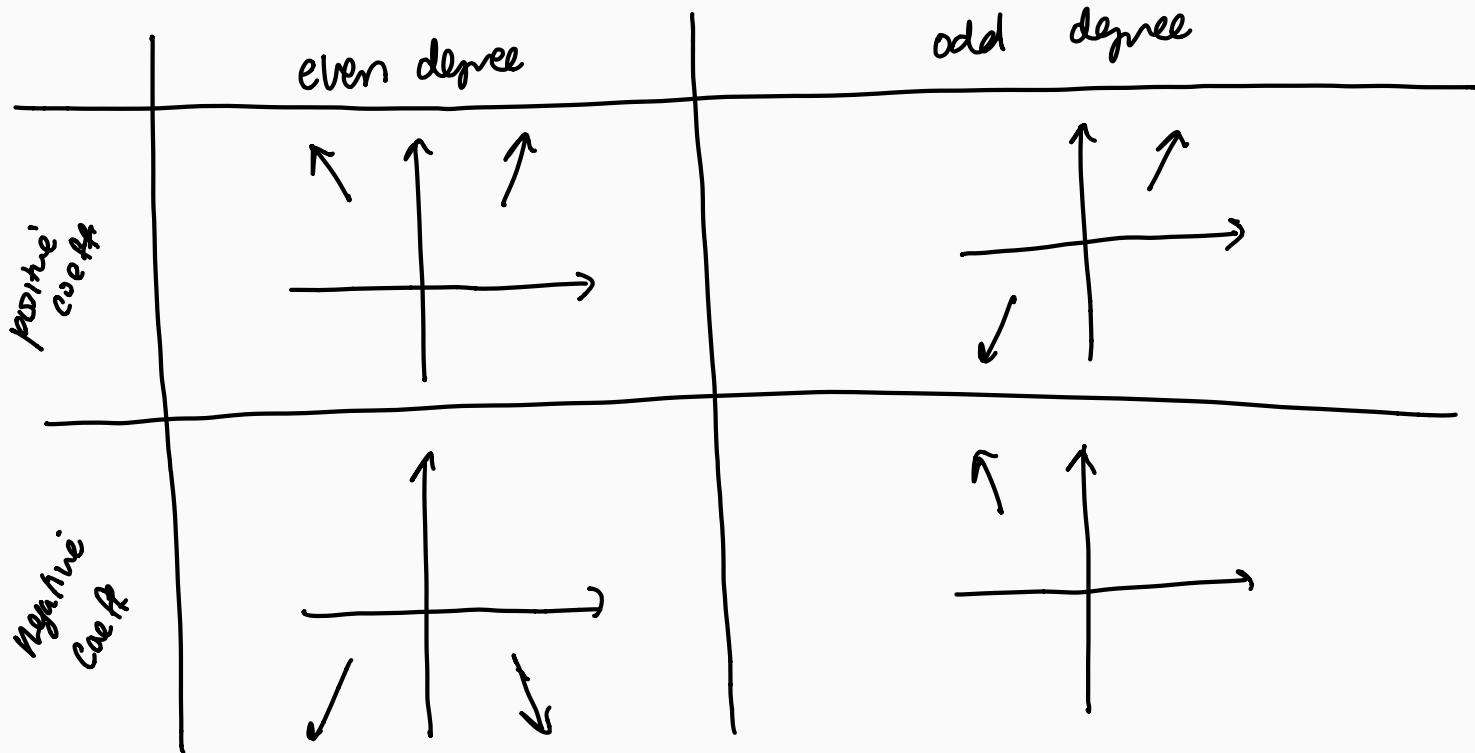
$$t^2 - 6t - 3 = 0$$

$$\begin{aligned} t &= \frac{6 \pm \sqrt{6^2 - 4(1)(-3)}}{2(1)} = \frac{6 \pm \sqrt{48}}{2} \\ &= \frac{6 \pm 4\sqrt{3}}{2} = 3 \pm 2\sqrt{3} \end{aligned}$$

$3 + 2\sqrt{3}$ seconds

Long Run Behavior of a Polynomial

- degree of polynomial (even or odd)
- leading coefficient (positive or negative)



Math 1 - Summer 2020 - July 7

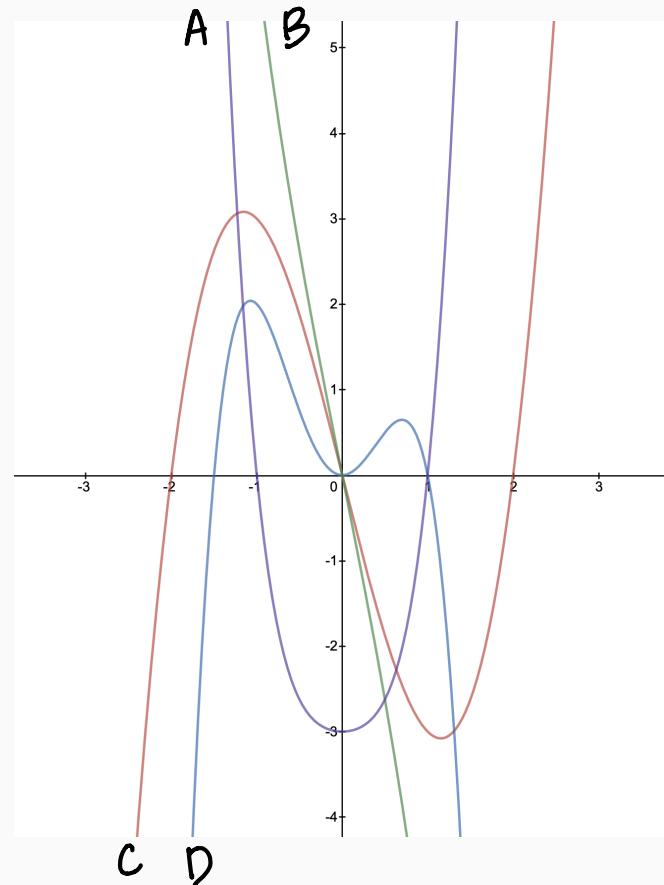
Example 2. Using long run behavior, match the function with its graph.

(a) $f(x) = x^3 - 4x$ C
odd degree
+ coeff

(b) $g(x) = -2x^4 - x^3 + 3x^2$ D
even degree
- coeff

(c) $h(x) = -x^3 - 5x$ B
odd degree

(d) $k(x) = 2x^4 + x^2 - 3$ A
even degree
+ coeff



Math 1 - Summer 2020 - July 7

Example 3. Given $P(x) = 3(x-1)^2(x+1)^1(x+2)^1$ answer the following:

- (a) What is the leading term of $P(x)$? $3x^4$ *+ coeff even degree*
- (b) What is the degree of $P(x)$? 4
- (c) As $x \rightarrow \infty$, $P(x) \rightarrow \infty$
- (d) As $x \rightarrow -\infty$, $P(x) \rightarrow -\infty$
- (e) What are the coordinates of the x -intercepts? What are their multiplicities?

x mult. are the exponents

$$3(x-1)^2(x+1)^1(x+2)^1 = 0$$

$$\begin{aligned} (x-1)^2 &= 0 & x+1 &= 0 & x+2 &= 0 \\ x=1 & & x=-1 & & x=-2 & \\ (1,0) \text{ mult 2} & & (-1,0) \text{ mult 1} & & (-2,0) \text{ mult 1} & \end{aligned}$$

- (f) What are the P -intercepts?

$$x=0 \quad P(0) = 3(0-1)^2(0+1)(0+2) = 3 \cdot 1 \cdot 1 \cdot 2 = 6$$

(0,6)

- (g) Sketch the graph of $P(x)$ (next slide).

Math 1 - Summer 2020 - July 7

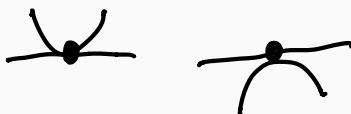
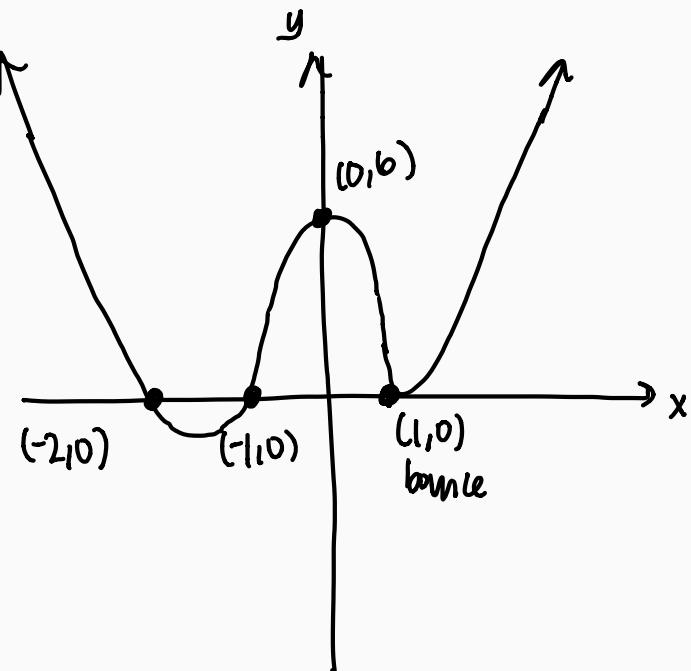
Example 3. Given $P(x) = 3(x - 1)^2(x + 1)(x + 2)$ answer the following:

(g) Sketch the graph of $P(x)$.

end behavior \uparrow \uparrow

x-int $(1, 0)$, $(-1, 0)$, $(-2, 0)$
mult 2 mult 1 mult 1
y-int $(0, 6)$

even multiplicity



Math 1 - Summer 2020 - July 7

Example 4. Given $P(x) = 2(x - 1)(x + 1)^2(x + 2)^2$ answer the following:

Try your own for a couple min.

(a) What is the leading term of $P(x)$? $2x^5$

+ coeff
odd degre

(b) What is the degree of $P(x)$? 5

(c) As $x \rightarrow \infty$, $P(x) \rightarrow \infty$

(d) As $x \rightarrow -\infty$, $P(x) \rightarrow -\infty$

(e) What are the coordinates of the x -intercepts? What are their multiplicities?

$$2(x-1)(x+1)^2(x+2)^2 = 0$$

$x-1=0$	$(x+1)^2=0$	$(x+2)^2=0$
$x=1$ $(1, 0)$ mult 1	$x=-1$ $(-1, 0)$ mult 2	$x=-2$ $(-2, 0)$ mult 2

(f) What are the P -intercepts?

$$x=0$$

$$P(0) = 2(0-1)(0+1)^2(0+2)^2 = 2(-1)(1)(4) = -8$$

$(0, -8)$

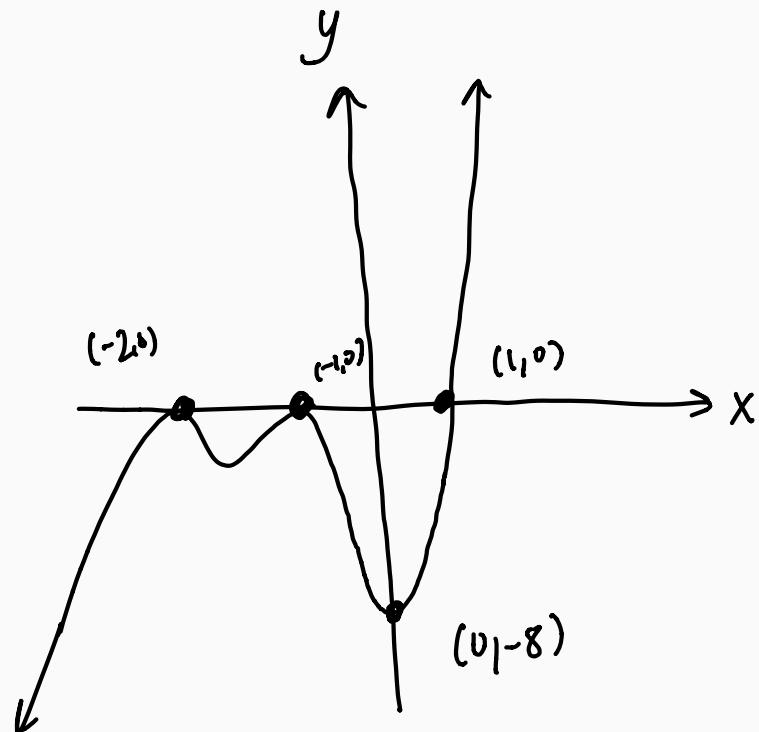
(g) Sketch the graph of $P(x)$ (next slide).

Math 1 - Summer 2020 - July 7

Example 4. Given $P(x) = 2(x - 1)(x + 1)^2(x + 2)^2$ answer the following:

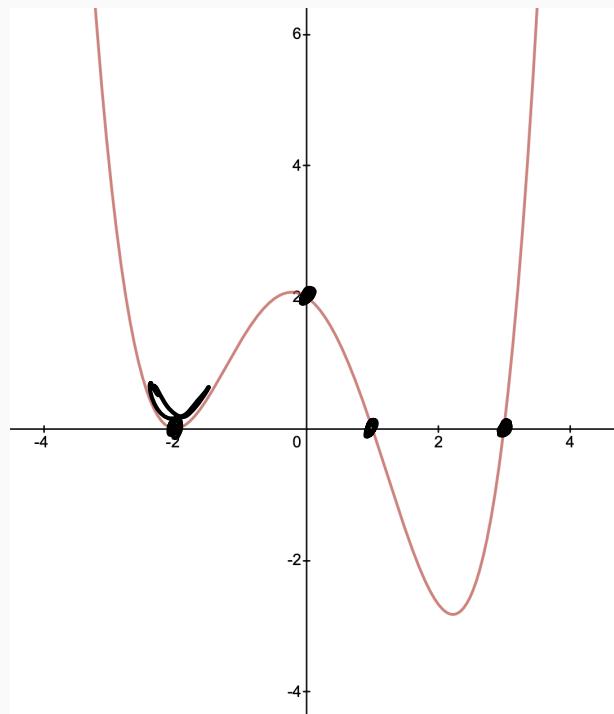
(g) Sketch the graph of $P(x)$.

long m
1
↙
(1, 0) (-1, 0) (-2, 0)
 \underbrace{ }_{mult 2
 bunch}
(0, -8)



Math 1 - Summer 2020 - July 7

Example 5. Write the equation of the function whose graph is given below.



long run behavior even degree
pos coeff

x-int
interepts $(-2, 0)$ $(0, 2)$ $(3, 0)$
mult 2

$$p(x) = a(x+2)^2(x-1)(x-3)$$

$$y\text{-int: } (0, 2)$$

$$p(0) = a(0+2)^2(0-1)(0-3) = 2$$

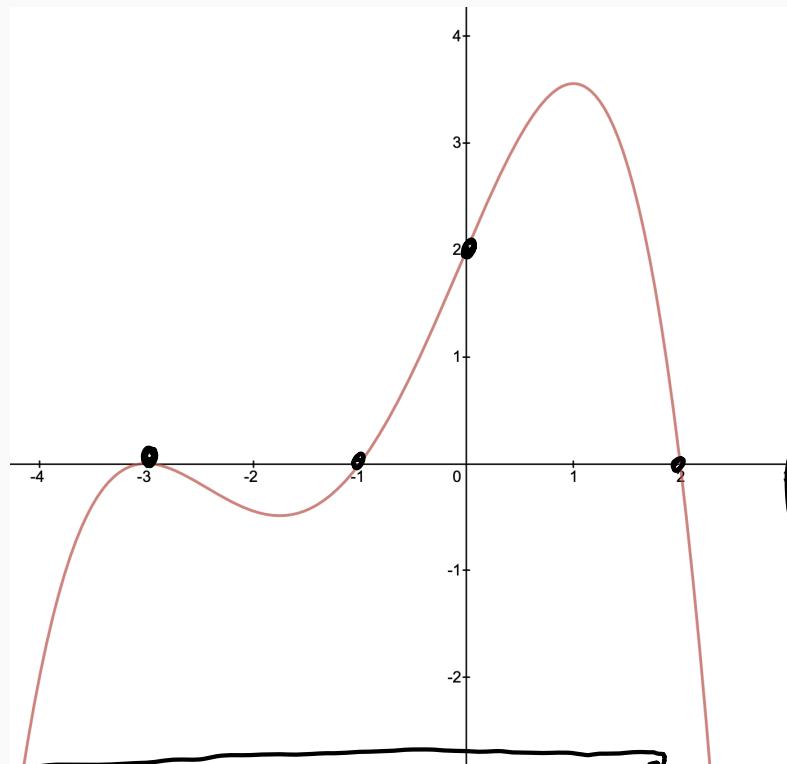
$$a(4)(-1)(-3) = 2$$

$$12a = 2$$

$$a = \frac{1}{6}$$

$$p(x) = \frac{1}{6}(x+2)^2(x-1)(x-3)$$

Example 6. Write the equation of the function whose graph is given below.



$$p(x) = -\frac{1}{9} (x+3)^2 (x+1) (x-2)$$

long run behavior

even degree
negative coeff

$$\begin{array}{llll} x\text{-int} & (-3, 0) & (-1, 0) & (2, 0) \\ \text{mult 2} & & & \end{array}$$

$$p(x) = a (x+3)^2 (x+1) (x-2)$$

$$y\text{-int} \quad (0, 2)$$

$$p(0) = a(0+3)^2(0+1)(0-2) = 2$$

$$a(9)(1)(-2) = 2$$

$$-18a = 2$$

$$a = -\frac{2}{18}$$

$$a = -\frac{1}{9}$$

Horizontal Asymptotes of a Rational Function

Example 7. Given $Q(x) = \frac{(x-1)(x+1)}{(x-2)^2(x+2)}$, answer the following:

- (a) What are the coordinates of the x -intercepts?

- (b) What are the coordinates of the Q -intercepts?

- (c) What are the vertical asymptotes?

- (d) What are the horizontal asymptotes?

- (e) As $x \rightarrow \infty$, $Q(x) \rightarrow \underline{\hspace{2cm}}$

- (f) As $x \rightarrow -\infty$, $Q(x) \rightarrow \underline{\hspace{2cm}}$

- (g) Sketch the graph of $Q(x)$ (next slide)

Example 7. Given $Q(x) = \frac{(x - 1)(x + 1)}{(x - 2)^2(x + 2)}$, answer the following:

- (g) Sketch the graph of $Q(x)$ (next slide)

Example 8. Given $Q(x) = \frac{3(x + 3)(x - 1)}{(x - 2)^2}$, answer the following:

- (a) What are the coordinates of the x -intercepts?

- (b) What are the coordinates of the Q -intercepts?

- (c) What are the vertical asymptotes?

- (d) What are the horizontal asymptotes?

- (e) As $x \rightarrow \infty$, $Q(x) \rightarrow \underline{\hspace{2cm}}$

- (f) As $x \rightarrow -\infty$, $Q(x) \rightarrow \underline{\hspace{2cm}}$

- (g) Sketch the graph of $Q(x)$ (next slide)

Example 8. Given $Q(x) = \frac{3(x + 3)(x - 1)}{(x - 2)^2}$, answer the following:

- (g) Sketch the graph of $Q(x)$ (next slide)